Visible to Intel only — GUID: mbb1521532621159
Ixiasoft
1. Intel® Agilex™ Configuration User Guide
2. Intel® Agilex™ Configuration Details
3. Intel® Agilex™ Configuration Schemes
4. Including the Reset Release Intel® FPGA IP in Your Design
5. Remote System Update (RSU)
6. Intel® Agilex™ Configuration Features
7. Intel® Agilex™ Debugging Guide
8. Intel® Agilex™ Configuration User Guide Archives
9. Document Revision History for the Intel® Agilex™ Configuration User Guide
2.1. Intel® Agilex™ Configuration Timing Diagram
2.2. Configuration Flow Diagram
2.3. Device Response to Configuration and Reset Events
2.4. Additional Clock Requirements for HPS and Transceivers
2.5. Intel® Agilex™ Configuration Pins
2.6. Configuration Clocks
2.7. Intel® Agilex™ Configuration Time Estimation
2.8. Generating Compressed .sof File
3.1.1. Avalon® -ST Configuration Scheme Hardware Components and File Types
3.1.2. Enabling Avalon-ST Device Configuration
3.1.3. The AVST_READY Signal
3.1.4. RBF Configuration File Format
3.1.5. Avalon-ST Single-Device Configuration
3.1.6. Debugging Guidelines for the Avalon® -ST Configuration Scheme
3.1.7. IP for Use with the Avalon® -ST Configuration Scheme: Intel FPGA Parallel Flash Loader II IP Core
3.1.7.4.1. PFL II IP Recommended Design Constraints to FPGA Avalon-ST Pins
3.1.7.4.2. PFL II IP Recommended Design Constraints for Using QSPI Flash
3.1.7.4.3. PFL II IP Recommended Design Constraints for using CFI Flash
3.1.7.4.4. PFL II IP Recommended Constraints for Other Input Pins
3.1.7.4.5. PFL II IP Recommended Constraints for Other Output Pins
3.2.1. AS Configuration Scheme Hardware Components and File Types
3.2.2. AS Single-Device Configuration
3.2.3. AS Using Multiple Serial Flash Devices
3.2.4. AS Configuration Timing Parameters
3.2.5. Maximum Allowable External AS_DATA Pin Skew Delay Guidelines
3.2.6. Programming Serial Flash Devices
3.2.7. Serial Flash Memory Layout
3.2.8. AS_CLK
3.2.9. Active Serial Configuration Software Settings
3.2.10. Intel® Quartus® Prime Programming Steps
3.2.11. Debugging Guidelines for the AS Configuration Scheme
5.1. Remote System Update Functional Description
5.2. Guidelines for Performing Remote System Update Functions for Non-HPS
5.3. Commands and Responses
5.4. Quad SPI Flash Layout
5.5. Generating Remote System Update Image Files Using the Programming File Generator
5.6. Remote System Update from FPGA Core Example
5.6.1. Prerequisites
5.6.2. Creating Initial Flash Image Containing Bitstreams for Factory Image and One Application Image
5.6.3. Programming Flash Memory with the Initial Remote System Update Image
5.6.4. Reconfiguring the Device with an Application or Factory Image
5.6.5. Adding an Application Image
5.6.6. Removing an Application Image
7.1. Configuration Debugging Checklist
7.2. Intel® Agilex™ Configuration Architecture Overview
7.3. Understanding Configuration Status Using quartus_pgm command
7.4. Configuration File Format Differences
7.5. Understanding SEUs
7.6. Reading the Unique 64-Bit CHIP ID
7.7. E-Tile Transceivers May Fail To Configure
7.8. Understanding and Troubleshooting Configuration Pin Behavior
Visible to Intel only — GUID: mbb1521532621159
Ixiasoft
5.1.4. Remote System Update Configuration Sequence
Figure 63. Remote System Update Configuration Sequence
In the following figure the blue text are states shown in the Configuration Flow Diagram.
Reconfiguration includes the following steps:
- After the device exits power-on-reset (POR), the boot ROM loads flash memory from the first valid decision firmware from one of the copies at addresses 0, 512 K, 1024 K, or 1536 K to initialize the SDM. The same configuration firmware is present in each of these locations. This firmware is part of the initial RSU flash image. ( Refer to Step 2 of Guidelines for Performing Remote System Update Functions for Non-HPS for step-by-step details for programming the initial RSU flash image into the flash.)
- The optional Direct to Factory pin controls whether the SDM firmware loads the factory or application image. You can assign the Direct to Factory input to any unused SDM pin. The SDM loads the application image if you do not assign this pin.
- The configuration pointer block in the flash device maintains a list of pointers to the application images.
- When loading an application image, the SDM traverses the pointer block in reverse order. The SDM loads the highest priority image. When image loading completes, the device enters user mode.
- If loading the newest (highest priority) image is unsuccessful, the SDM tries the next application image from the list. If none of the application images load successfully, the SDM loads the factory image.
- If loading the factory image fails, you can recover by reprogramming the quad SPI flash with the initial RSU flash image using the JTAG interface.
Note: You must keep nCONFIG high until the device enters the user mode.
- Keep the nCONFIG signal high after the device powers up and throughout the entire device configuration to load an application or factory image.
- Keep the nCONFIG signal high during the remote update to other application image or factory image by using the RSU_IMAGE_UPDATE command.