Video and Vision Processing Suite Intel® FPGA IP User Guide

ID 683329
Date 12/31/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents
1. About the Video and Vision Processing Suite 2. Getting Started with the Video and Vision Processing IPs 3. Video and Vision Processing IPs Functional Description 4. Video and Vision Processing IP Interfaces 5. Video and Vision Processing IP Registers 6. Video and Vision Processing IPs Software Programming Model 7. Protocol Converter Intel® FPGA IP 8. 1D LUT Intel® FPGA IP 9. 3D LUT Intel® FPGA IP 10. AXI-Stream Broadcaster Intel® FPGA IP 11. Bits per Color Sample Adapter Intel FPGA IP 12. Black Level Correction Intel® FPGA IP 13. Black Level Statistics Intel® FPGA IP 14. Chroma Key Intel® FPGA IP 15. Chroma Resampler Intel® FPGA IP 16. Clipper Intel® FPGA IP 17. Clocked Video Input Intel® FPGA IP 18. Clocked Video to Full-Raster Converter Intel® FPGA IP 19. Clocked Video Output Intel® FPGA IP 20. Color Space Converter Intel® FPGA IP 21. Defective Pixel Correction Intel® FPGA IP 22. Deinterlacer Intel® FPGA IP 23. Demosaic Intel® FPGA IP 24. FIR Filter Intel® FPGA IP 25. Frame Cleaner Intel® FPGA IP 26. Full-Raster to Clocked Video Converter Intel® FPGA IP 27. Full-Raster to Streaming Converter Intel® FPGA IP 28. Genlock Controller Intel® FPGA IP 29. Generic Crosspoint Intel® FPGA IP 30. Genlock Signal Router Intel® FPGA IP 31. Guard Bands Intel® FPGA IP 32. Histogram Statistics Intel® FPGA IP 33. Interlacer Intel® FPGA IP 34. Mixer Intel® FPGA IP 35. Pixels in Parallel Converter Intel® FPGA IP 36. Scaler Intel® FPGA IP 37. Stream Cleaner Intel® FPGA IP 38. Switch Intel® FPGA IP 39. Tone Mapping Operator Intel® FPGA IP 40. Test Pattern Generator Intel® FPGA IP 41. Unsharp Mask Intel® FPGA IP 42. Video and Vision Monitor Intel FPGA IP 43. Video Frame Buffer Intel® FPGA IP 44. Video Frame Reader Intel FPGA IP 45. Video Frame Writer Intel FPGA IP 46. Video Streaming FIFO Intel® FPGA IP 47. Video Timing Generator Intel® FPGA IP 48. Vignette Correction Intel® FPGA IP 49. Warp Intel® FPGA IP 50. White Balance Correction Intel® FPGA IP 51. White Balance Statistics Intel® FPGA IP 52. Design Security 53. Document Revision History for Video and Vision Processing Suite User Guide

29.1. About the Generic Crosspoint IP

The IP is a M x N generic data crosspoint where M and N signify the number of input and output ports, respectively. This IP can route discrete signals around an FPGA design under software control. Both input and output ports work on the same clock domain.
Data is input to and output from the Generic Crosspoint IP via a selectable number of ports. The size of the input and output ports is a global parameter configurable from the GUI. The number of input and output ports is in the range of 1 to 32.
Figure 73. Generic Crosspoint Block Diagram

The front-end and back-end of this IP include a bank of registers, and the crosspoint multiplexer and routing logic, which can process run-time and build-time configurable routing between input and output ports.

You can control the input-to-output routing dynamically at run-time via the CPU interface. You can also assign a default routing at build-time via the Platform Designer IP GUI. The crosspoint routing reverts to the default routing on reset. If you turn off the CPU interface, the crosspoint is statically fixed at the default routing, which you can use if the routing does not need to change at run-time.