Visible to Intel only — GUID: sam1412835835642
Ixiasoft
Release Information for GPIO Intel® FPGA IP
GPIO Intel® FPGA IP Features
GPIO Intel® FPGA IP Data Paths
GPIO Intel® FPGA IP Interface Signals
Verifying Resource Utilization and Design Performance
GPIO Intel® FPGA IP Parameter Settings
Register Packing
GPIO Intel® FPGA IP Timing
GPIO Intel® FPGA IP Design Examples
IP Migration Flow for Arria® V, Cyclone® V, and Stratix® V Devices
GPIO Intel® FPGA IP User Guide Archives
Document Revision History for GPIO Intel® FPGA IP User Guide: Intel® Arria® 10 and Intel® Cyclone® 10 GX Devices
Visible to Intel only — GUID: sam1412835835642
Ixiasoft
GPIO Intel® FPGA IP Data Paths
Figure 1. High-Level View of Single-Ended GPIO
Data Path | Register Mode | |||
---|---|---|---|---|
Bypass | Simple Register | DDR I/O | ||
Full-Rate | Half-Rate | |||
Input | Data goes from the delay element to the core, bypassing all double data rate I/Os (DDIOs). | The full-rate DDIO operates as a simple register, bypassing half-rate DDIOs. The Fitter chooses whether to pack the register in the I/O or implement the register in the core, depending on the area and timing trade-offs. | The full-rate DDIO operates as a regular DDIO, bypassing the half-rate DDIOs. | The full-rate DDIO operates as a regular DDIO. The half-rate DDIOs convert full-rate data to half-rate data. |
Output | Data goes from the core straight to the delay element, bypassing all DDIOs. | The full-rate DDIO operates as a simple register, bypassing half-rate DDIOs. The Fitter chooses whether to pack the register in the I/O or implement the register in the core, depending on the area and timing trade-offs. | The full-rate DDIO operates as a regular DDIO, bypassing the half-rate DDIOs. | The full-rate DDIO operates as a regular DDIO. The half-rate DDIOs convert full-rate data to half-rate data. |
Bidirectional | The output buffer drives both an output pin and an input buffer. | The full-rate DDIO operates as a simple register. The output buffer drives both an output pin and an input buffer. | The full-rate DDIO operates as a regular DDIO. The output buffer drives both an output pin and an input buffer. The input buffer drives a set of three flip-flops. | The full-rate DDIO operates as a regular DDIO. The half-rate DDIOs convert full-rate data to half-rate. The output buffer drives both an output pin and an input buffer. The input buffer drives a set of three flip-flops. |
If you use asynchronous clear and preset signals, all DDIOs share these same signals.
Half-rate and full-rate DDIOs connect to separate clocks. When you use half-rate and full-rate DDIOs, the full-rate clock must run at twice the half-rate frequency. You can use different phase relationships to meet timing requirements.
Related Information