Visible to Intel only — GUID: wdd1574880426429
Ixiasoft
1. Introduction
2. IP Architecture and Functional Description
3. Parameters
4. Interfaces
5. Advanced Features
6. Testbench
7. Troubleshooting/Debugging
8. Intel® P-tile Avalon® Streaming IP for PCI Express* User Guide Archives
9. Document Revision History for the P-Tile Avalon® Streaming Intel® FPGA IP for PCI Express* User Guide
A. Configuration Space Registers
B. Root Port Enumeration
C. Implementation of Address Translation Services (ATS) in Endpoint Mode
D. Packets Forwarded to the User Application in TLP Bypass Mode
E. Using the Avery BFM for Intel P-Tile PCI Express Gen4 x16 Simulations
F. Bifurcated Endpoint Support for Independent Warm Resets
3.2.3.1. Device Capabilities
3.2.3.2. VirtIO Parameters
3.2.3.3. Link Capabilities
3.2.3.4. Legacy Interrupt Pin Register
3.2.3.5. MSI Capabilities
3.2.3.6. MSI-X Capabilities
3.2.3.7. Slot Capabilities
3.2.3.8. Latency Tolerance Reporting (LTR)
3.2.3.9. Process Address Space ID (PASID)
3.2.3.10. Device Serial Number Capability
3.2.3.11. Page Request Service (PRS)
3.2.3.12. Access Control Service (ACS) Capabilities
3.2.3.13. Power Management
3.2.3.14. Vendor Specific Extended Capability (VSEC) Registers
3.2.3.15. TLP Processing Hints (TPH)
3.2.3.16. Address Translation Services (ATS) Capabilities
4.1. Overview
4.2. Clocks and Resets
4.3. Serial Data Interface
4.4. Avalon-ST Interface
4.5. Hard IP Status Interface
4.6. Interrupt Interface
4.7. Error Interface
4.8. Hot Plug Interface (RP Only)
4.9. Power Management Interface
4.10. Configuration Output Interface
4.11. Configuration Intercept Interface (EP Only)
4.12. Hard IP Reconfiguration Interface
4.13. PHY Reconfiguration Interface
4.14. Page Request Service (PRS) Interface (EP Only)
4.4.1. TLP Header and Data Alignment for the Avalon-ST RX and TX Interfaces
4.4.2. Avalon® -ST RX Interface
4.4.3. Avalon® -ST RX Interface rx_st_ready Behavior
4.4.4. RX Flow Control Interface
4.4.5. Avalon® -ST TX Interface
4.4.6. Avalon® -ST TX Interface tx_st_ready Behavior
4.4.7. TX Flow Control Interface
4.4.8. Tag Allocation
5.2.2.5.1. VirtIO Common Configuration Capability Register (Address: 0x012)
5.2.2.5.2. VirtIO Common Configuration BAR Indicator Register (Address: 0x013)
5.2.2.5.3. VirtIO Common Configuration BAR Offset Register (Address: 0x014)
5.2.2.5.4. VirtIO Common Configuration Structure Length Register (Address 0x015)
5.2.2.5.5. VirtIO Notifications Capability Register (Address: 0x016)
5.2.2.5.6. VirtIO Notifications BAR Indicator Register (Address: 0x017)
5.2.2.5.7. VirtIO Notifications BAR Offset Register (Address: 0x018)
5.2.2.5.8. VirtIO Notifications Structure Length Register (Address: 0x019)
5.2.2.5.9. VirtIO Notifications Notify Off Multiplier Register (Address: 0x01A)
5.2.2.5.10. VirtIO ISR Status Capability Register (Address: 0x02F)
5.2.2.5.11. VirtIO ISR Status BAR Indicator Register (Address: 0x030)
5.2.2.5.12. VirtIO ISR Status BAR Offset Register (Address: 0x031)
5.2.2.5.13. VirtIO ISR Status Structure Length Register (Address: 0x032)
5.2.2.5.14. VirtIO Device Specific Capability Register (Address: 0x033)
5.2.2.5.15. VirtIO Device Specific BAR Indicator Register (Address: 0x034)
5.2.2.5.16. VirtIO Device Specific BAR Offset Register (Address 0x035 )
5.2.2.5.17. VirtIO Device Specific Structure Length Register (Address: 0x036)
5.2.2.5.18. VirtIO PCI Configuration Access Capability Register (Address: 0x037)
5.2.2.5.19. VirtIO PCI Configuration Access BAR Indicator Register (Address: 0x038)
5.2.2.5.20. VirtIO PCI Configuration Access BAR Offset Register (Address: 0x039)
5.2.2.5.21. VirtIO PCI Configuration Access Structure Length Register (Address: 0x03A)
5.2.2.5.22. VirtIO PCI Configuration Access Data Register (Address: 0x03B)
6.3.5.1. ebfm_barwr Procedure
6.3.5.2. ebfm_barwr_imm Procedure
6.3.5.3. ebfm_barrd_wait Procedure
6.3.5.4. ebfm_barrd_nowt Procedure
6.3.5.5. ebfm_cfgwr_imm_wait Procedure
6.3.5.6. ebfm_cfgwr_imm_nowt Procedure
6.3.5.7. ebfm_cfgrd_wait Procedure
6.3.5.8. ebfm_cfgrd_nowt Procedure
6.3.5.9. BFM Configuration Procedures
6.3.5.10. BFM Shared Memory Access Procedures
6.3.5.11. BFM Log and Message Procedures
6.3.5.12. Verilog HDL Formatting Functions
6.3.5.11.1. ebfm_display Verilog HDL Function
6.3.5.11.2. ebfm_log_stop_sim Verilog HDL Function
6.3.5.11.3. ebfm_log_set_suppressed_msg_mask Task
6.3.5.11.4. ebfm_log_set_stop_on_msg_mask Verilog HDL Task
6.3.5.11.5. ebfm_log_open Verilog HDL Function
6.3.5.11.6. ebfm_log_close Verilog HDL Function
A.3.1. Intel-Defined VSEC Capability Header (Offset 00h)
A.3.2. Intel-Defined Vendor Specific Header (Offset 04h)
A.3.3. Intel Marker (Offset 08h)
A.3.4. JTAG Silicon ID (Offset 0x0C - 0x18)
A.3.5. User Configurable Device and Board ID (Offset 0x1C - 0x1D)
A.3.6. General Purpose Control and Status Register (Offset 0x30)
A.3.7. Uncorrectable Internal Error Status Register (Offset 0x34)
A.3.8. Uncorrectable Internal Error Mask Register (Offset 0x38)
A.3.9. Correctable Internal Error Status Register (Offset 0x3C)
A.3.10. Correctable Internal Error Mask Register (Offset 0x40)
Visible to Intel only — GUID: wdd1574880426429
Ixiasoft
2.1.2. Refclk
P-Tile has two reference clock inputs at the package level, refclk0 and refclk1. You must connect a 100 MHz reference clock source to these two inputs. Depending on the port mode, you can drive the two refclk inputs using either a single clock source or two independent clock sources.
In 1x16 and 4x4 modes, drive the refclk inputs with a single clock source (through a fanout buffer) as shown in the figure below.
Figure 3. Using a Single 100 MHz Clock Source in 1x16 and 4x4 Modes
In 2x8 mode, you can drive the refclk inputs with either a single 100 MHz clock source as shown above, or two independent 100 MHz sources (see the figure below) depending on your system architecture. For example, if your system has each x8 port connected to a separate CPU/Root Complex, it may be required to drive these refclk inputs using independent clock sources. In that case, it is strongly recommended that the refclk0 input for Port 0 be always running because it feeds the reference clock for the P-Tile core PLL that controls the data transfers between the P-Tile and FPGA fabric via the EMIB. If this clock goes down, Port 0 link will go down and Port 1 will not be able to communicate with the FPGA fabric. Following are the guidelines for implementing two independent refclks in 2x8 mode:
- If the link can handle two separate reference clocks, drive the refclk0 of P-Tile with the on-board free-running oscillator.
- If the link needs to use a common reference clock, then PERST# needs to indicate the stability of this reference clock. If this reference clock goes down, the entire P-Tile must be reset.
Figure 4. Using Independent 100 MHz Clock Sources in 2x8 Mode