Visible to Intel only — GUID: GUID-8364303F-3BC7-4250-8779-EB0C84F8A928
Visible to Intel only — GUID: GUID-8364303F-3BC7-4250-8779-EB0C84F8A928
her2
Computes a rank-2 update of a hermitian matrix.
Description
The her2 routines compute two scalar-vector-vector products and add them to a hermitian matrix. The operation is defined as:
where:
alpha is a scalar
A is n x n hermitian matrix
x and y are vectors or length n
her2 supports the following precisions:
T |
---|
std::complex<float> |
std::complex<double> |
her2 (Buffer Version)
Syntax
namespace oneapi::mkl::blas::column_major { void her2(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, T alpha, sycl::buffer<T,1> &x, std::int64_t incx, sycl::buffer<T,1> &y, std::int64_t incy, sycl::buffer<T,1> &a, std::int64_t lda) }
namespace oneapi::mkl::blas::row_major { void her2(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, T alpha, sycl::buffer<T,1> &x, std::int64_t incx, sycl::buffer<T,1> &y, std::int64_t incy, sycl::buffer<T,1> &a, std::int64_t lda) }
Input Parameters
- queue
-
The queue where the routine should be executed.
- upper_lower
-
Specifies whether matrix A is upper or lower triangular. See Data Types for more details.
- n
-
Number of columns of matrix A. Must be at least zero.
- alpha
-
Scaling factor for the matrix-vector product.
- x
-
Buffer holding input vector x. Size of the buffer must be at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.
- incx
-
Stride of vector x. Must not be zero.
- y
-
Buffer holding input/output vector y. Size of the buffer must be at least (1 + (n - 1)*abs(incy)). See Matrix Storage for more details.
- incy
-
Stride of vector y. Must not be zero.
- a
-
Buffer holding input matrix A. Size of the buffer must be at least lda * n. See Matrix Storage for more details.
- lda
-
Leading dimension of matrix A. Must be at least n and positive.
Output Parameters
- a
-
Buffer holding updated upper triangular part of the hermitian matrix A if upper_lower=upper, or updated lower triangular part of the hermitian matrix A if upper_lower=lower.
The imaginary parts of the diagonal elements are set to zero.
her2 (USM Version)
Syntax
namespace oneapi::mkl::blas::column_major { sycl::event her2(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, T alpha, const T *x, std::int64_t incx, const T *y, std::int64_t incy, T *a, std::int64_t lda, const std::vector<sycl::event> &dependencies = {}) }
namespace oneapi::mkl::blas::row_major { sycl::event her2(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, T alpha, const T *x, std::int64_t incx, const T *y, std::int64_t incy, T *a, std::int64_t lda, const std::vector<sycl::event> &dependencies = {}) }
Input Parameters
- queue
-
The queue where the routine should be executed.
- upper_lower
-
Specifies whether matrix A is upper or lower triangular. See Data Types for more details.
- n
-
Number of columns of matrix A. Must be at least zero.
- alpha
-
Scaling factor for the matrix-vector product.
- x
-
Pointer to input vector x. Size of the array holding input vector x must be at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.
- incx
-
Stride of vector x. Must not be zero.
- y
-
Pointer to input/output vector y. Size of the array holding input/output vector y must be at least (1 + (n - 1)*abs(incy)). See Matrix Storage for more details.
- incy
-
Stride of vector y. Must not be zero.
- a
-
Pointer to input matrix A. Size of the array holding input matrix A must be at least lda * n. See Matrix Storage for more details.
- lda
-
Leading dimension of matrix A. Must be at least n and positive.
- dependencies
-
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- a
-
Pointer to updated upper triangular part of the hermitian matrix A if upper_lower=upper, or updated lower triangular part of the hermitian matrix A if upper_lower=lower.
The imaginary parts of the diagonal elements are set to zero.
Return Values
Output event to wait on to ensure computation is complete.