Visible to Intel only — GUID: GUID-29DA59CE-E48C-4DC1-AB90-C79DECFD6723
FPGA Optimization Guide for Intel® oneAPI Toolkits
Introduction To FPGA Design Concepts
Analyze Your Design
Optimize Your Design
FPGA Optimization Flags, Attributes, Pragmas, and Extensions
Quick Reference
Additional Information
Document Revision History for the FPGA Optimization Guide for Intel® oneAPI Toolkits
Refactor the Loop-Carried Data Dependency
Relax Loop-Carried Dependency
Transfer Loop-Carried Dependency to Local Memory
Minimize the Memory Dependencies for Loop Pipelining
Unroll Loops
Fuse Loops to Reduce Overhead and Improve Performance
Optimize Loops With Loop Speculation
Remove Loop Bottlenecks
Shannonization to Improve FMAX/II
Optimize Inner Loop Throughput
Improve Loop Performance by Caching On-Chip Memory
Global Memory Bandwidth Use Calculation
Manual Partition of Global Memory
Partitioning Buffers Across Different Memory Types (Heterogeneous Memory)
Partitioning Buffers Across Memory Channels of the Same Memory Type
Ignoring Dependencies Between Accessor Arguments
Contiguous Memory Accesses
Static Memory Coalescing
Specify Schedule FMAX Target for Kernels (-Xsclock=<clock target>)
Disable Burst-Interleaving of Global Memory (-Xsno-interleaving=<global_memory_type>)
Force Ring Interconnect for Global Memory (-Xsglobal-ring)
Force a Single Store Ring to Reduce Area (-Xsforce-single-store-ring)
Force Fewer Read Data Reorder Units to Reduce Area (-Xsnum-reorder)
Disable Hardware Kernel Invocation Queue (-Xsno-hardware-kernel-invocation-queue)
Modify the Handshaking Protocol Between Clusters (-Xshyper-optimized-handshaking)
Disable Automatic Fusion of Loops (-Xsdisable-auto-loop-fusion)
Fuse Adjacent Loops With Unequal Trip Counts (-Xsenable-unequal-tc-fusion)
Pipeline Loops in Non-task Kernels (-Xsauto-pipeline)
Control Semantics of Floating-Point Operations (-fp-model=<value>)
Modify the Rounding Mode of Floating-point Operations (-Xsrounding=<rounding_type>)
Global Control of Exit FIFO Latency of Stall-free Clusters (-Xssfc-exit-fifo-type=<value>)
Enable the Read-Only Cache for Read-Only Accessors (-Xsread-only-cache-size=<N>)
Control Hardware Implementation of the Supported Data Types and Math Operations (-Xsdsp-mode=<option>)
Visible to Intel only — GUID: GUID-29DA59CE-E48C-4DC1-AB90-C79DECFD6723
Advantages and Limitations of Arbitrary Precision Data Types
Advantages
The arbitrary precision data types have the following advantages over the use of standard C/C++ data types:
- You can achieve narrower data paths and processing elements for various operations in the circuit.
- The data types ensure that all operations are carried out in a size guaranteed not to lose any data. However, you can still lose data if you store data in a location where the data type is too narrow in size.
Limitations
AC Data Types
The AC data types have the following limitations:
- Multipliers are limited to generating 512-bit results.
- Dividers for ac_int data types are limited to a maximum of 64-bit unsigned or 63-bit signed.
- You must initialize all AC data type variables before accessing them. Accessing the AC data types before initialization is an undefined behavior and leads to unexpected results. Assigning each bit explicitly using the [] operator or set_slc function does not count as initializing an AC data type. The default constructor of AC data types does not initialize the variable; other constructors initialize them.
- Dividers for ac_fixed data types are limited to a maximum of 64-bits (unsigned or signed).
- Creation of ac_fixed variables larger than 32 bits are supported only with the use of the bit_fill utility function.
For example:
// Creating an ac_fixed with value set to 4294967298, which is larger than 2^32. // Unsupported ac_fixed<64, 64, false> v1 = ac_fixed<64, 64, false>(4294967298); // Supported // 4294967298 is 0b100000000000000000000000000000010 in binary // Express that as two 32-bit numbers and use the bit_fill utility function. const int vec_inp[2] = {0x00000001, 0x00000002}; ac_fixed<64, 64, false> bit_fill_res; bit_fill_res.bit_fill<2>(vec_inp);
- The AC data types are not supported on the Red Hat Enterprise Linux* (RHEL) 7 operating system for emulation due to a bug in the glibc version bundled with RHEL 7.
- You cannot template the ac_complex data type with the ap_float data type.
- When using the bit_fill_hex() function inside a kernel, pass the input string to the kernel through a char buffer and not as a string buffer. In addition, hardware and simulation compile flows do not support using a string literal or passing the string directly to the function. The following are the supported and unsupported code patterns:
Supported Patterns
// Supported Pattern 1: Passing string as a char sycl::buffer to the kernel ac_int<140, false> supported_example1(queue &q) { ac_int<140, false> a; std::string hex_string{"0x177632EE7E265080BD54FF0CE7EF42C12"}; constexpr int N = 36; // size of hex_string buffer<ac_int<140, false>, 1> inp1(&a, 1); // Note: the N + 1 ensures that the null byte //terminating the char array buffer is copied buffer<char, 1> inp2(hex_string.c_str(), range<1>(N + 1)); q.submit([&](handler &h) { accessor x(inp1, h, read_write); accessor y(inp2, h, read_only); h.single_task<class D>([=] { x[0].bit_fill_hex(&y[0]); }); }); q.wait(); return a; }
// Supported Pattern 2: Create a char array with the string literal. ac_int<140, false> supported_example2(queue &q) { ac_int<140, false> a; buffer<ac_int<140, false>, 1> inp1(&a, 1); q.submit([&](handler &h) { accessor x(inp1, h, read_write); h.single_task<class D>([=] { char str[36] = "0x177632EE7E265080BD54FF0CE7EF42C12"; x[0].bit_fill_hex(str); }); }); q.wait(); return a; }
Unsupported Patterns
// Unsupported Pattern 1 – Using a string Literal, will result in compilation error ac_int<140, false> unsupported_example1(queue& q) { { ac_int<140, false> a; buffer<ac_int<140, false>, 1> a_buff(&a, 1); q.submit([&](handler &h) { accessor a_acc {a_buff, h, write_only, no_init}; h.single_task<class A>([=]() { a_acc[0].bit_fill_hex("1141e98e8c51b7ac7ad387d7f8ee4f1b9"); }); }); q.wait_and_throw(); return a; } }
// Unsupported Pattern 2 – Passing the string to the kernel in a string sycl::buffer ac_int<140, false> unsupported_example2(queue& q) { { std::string str{"1141e98e8c51b7ac7ad387d7f8ee4f1b9"}; ac_int<140, false> a; buffer<std::string, 1> str_buff(&str, 1); buffer<ac_int<140, false>, 1> a_buff(&a, 1); q.submit([&](handler &h) { accessor str_acc {str_buff, h, read_only}; accessor a_acc {a_buff, h, write_only, no_init}; h.single_task<class B>([=]() { a_acc[0].bit_fill_hex(str_acc[0].c_str()); }); }); q.wait_and_throw(); return a; } }
ap_float Data Type
The ap_float data type has the following limitations:
- While the floating-point optimization of converting into constants is performed for float and double data types, it is not performed for the ap_float data type.
- A limited set of math functions is supported. For details, see Math Functions Supported by ap_float Data Type.
- Constant initialization works only with the round-towards-zero (RZERO) rounding mode.
- For emulation, the ap_float math library is not supported on the Red Hat Enterprise Linux* (RHEL) 7 operating system.
- When computing A^B using ap_float's ihc_pown function, if B is an unsigned type T of size N bits and is equal to the maximum unsigned value, redefine B to be of size N+1 bits. Otherwise, results will be incorrect. For example:
// Sample Code: ap_float<8, 7> a = 2; ac_int<4, false> b = 15; // max value that this ac_int can hold … = ihc_pown(a , b); // !!! Will produce incorrect result
// Workaround: ap_float<8, 7> a = 2; ac_int<5, false> b = 15; // Workaround … = ihc_pown(a , b); // Will produce correct result
Parent topic: Variable-Precision Integer and Floating-Point Support