Visible to Intel only — GUID: cra1716385670816
Ixiasoft
1. About the Drive-on-Chip with Functional Safety Design Example for Agilex™ 7 Devices
2. Getting Started
3. Rebuilding the Drive-on-Chip Design
4. Functional Description of the Drive-On-Chip with Functional Safety Design Example for Agilex 7 Devices
5. HPS Channel Safety Software
6. Drive-on-Chip Design Recommendations and Disclaimers
7. Document Revision History for AN 999: Drive-on-Chip with Functional Safety Design Example for Agilex 7 Devices
2.1. Software Requirements for the Drive-On-Chip with Functional Safety Design Example for Agilex 7 Devices
2.2. Hardware Requirements for the Safe Drive-On-Chip with Functional Safety Design Example for Agilex 7 Devices
2.3. Downloading and Installing the Design
2.4. Installing Python
2.5. Creating an SD Card Image
2.6. Setting Up your Development Board for the Drive-On-Chip with Functional Safety Design Example for Agilex 7 Devices
2.7. Debugging and Monitoring the Drive-On-Chip with Functional Safety Design Example for Agilex 7 Devices with Python GUI
2.8. Looking into the Drive-On-Chip Output
3.1. Generating the Platform Designer System
3.2. Generating and Building the NiosV/g BSP for the Drive-On-Chip Design Example
3.3. Compiling the Hardware in the Intel Quartus Prime Software
3.4. Modifying the Motor Control Software Application
3.5. Generating .jic and .rbf files After Hardware Modifications
3.6. Recreate an SD Card Image
3.7. Modifying the HPS Safety Function Application
Visible to Intel only — GUID: cra1716385670816
Ixiasoft
1.2.1. High-Level Block Diagram of the Drive-On-Chip with Functional Safety Design Example
Figure 3. High-Level Block Diagram of the Drive-On-Chip with Functional Safety Design ExampleThe blocks in yellow belong to the original Drive-On-Chip Design Example for Agilex™ 7 Devices. The blocks in green are the implementation of the FPGA safety channel and the blue blocks are the implementation of the HPS safety channel. The diagram shows the logic that the design shares between both channels necessary to process the safety response time (1ms) and for data sharing for cross-comparison.