2.2.2.2.1. Non-Bonded Channel Configurations Using the x1 Clock Network
2.2.2.2.2. Non-Bonded Channel Configurations Using the xN Clock Network
2.2.2.2.3. Bonded Channel Configurations
2.2.2.2.4. Bonded Channel Configurations Using the xN Clock Network
2.2.2.2.5. Bonded Channel Configurations Using the PLL Feedback Compensation Path
3.2.1. User-Coded Reset Controller Signals
3.2.2. Resetting the Transmitter with the User-Coded Reset Controller During Device Power-Up
3.2.3. Resetting the Transmitter with the User-Coded Reset Controller During Device Operation
3.2.4. Resetting the Receiver with the User-Coded Reset Controller During Device Power-Up Configuration
3.2.5. Resetting the Receiver with the User-Coded Reset Controller During Device Operation
4.1. Protocols and Transceiver PHY IP Support
4.2. 10GBASE-R and 10GBASE-KR
4.3. Interlaken
4.4. PCI Express (PCIe)—Gen1, Gen2, and Gen3
4.5. XAUI
4.6. CPRI and OBSAI—Deterministic Latency Protocols
4.7. Transceiver Configurations
4.8. Native PHY IP Configuration
4.9. Stratix V GT Device Configurations
4.10. Document Revision History
4.2.1. 10GBASE-R and 10GBASE-KR Transceiver Datapath Configuration
4.2.2. 10GBASE-R and 10GBASE-KR Supported Features
4.2.3. 1000BASE-X and 1000BASE-KX Transceiver Datapath
4.2.4. 1000BASE-X and 1000BASE-KX Supported Features
4.2.5. Synchronization State Machine Parameters in 1000BASE-X and 1000BASE-KX Configurations
4.2.6. Transceiver Clocking in 10GBASE-R, 10GBASE-KR, 1000BASE-X, and 1000BASE-KX Configurations
4.4.1. Transceiver Datapath Configuration
4.4.2. Supported Features for PCIe Configurations
4.4.3. Supported Features for PCIe Gen3
4.4.4. Transceiver Clocking and Channel Placement Guidelines
4.4.5. Advanced Channel Placement Guidelines for PIPE Configurations
4.4.6. Transceiver Clocking for PCIe Gen3
6.1. Dynamic Reconfiguration Features
6.2. Offset Cancellation
6.3. PMA Analog Controls Reconfiguration
6.4. On-Chip Signal Quality Monitoring (Eye Viewer)
6.5. Decision Feedback Equalization
6.6. Adaptive Equalization
6.7. Dynamic Reconfiguration of Loopback Modes
6.8. Transceiver PLL Reconfiguration
6.9. Transceiver Channel Reconfiguration
6.10. Transceiver Interface Reconfiguration
6.11. Document Revision History
1.3.1.4. Rate Match (Clock Rate Compensation) FIFO
The rate match (clock rate compensation) FIFO compensates for small clock frequency differences between the upstream transmitter and the local receiver clocks by inserting or removing skip (SKP) symbols or ordered sets from the interpacket gap (IPG) or idle streams. The rate match FIFO deletes SKP symbols or ordered sets when the upstream transmitter reference clock frequency is higher than the local receiver reference clock frequency. The rate match FIFO inserts SKP symbols or ordered sets when the local receiver reference clock frequency is higher than the upstream transmitter reference clock frequency.
Note: For the Gigabit Ethernet protocol, if you have the auto-negotiation state machine in the FPGA core with rate match FIFO enabled, refer to the "Rate Match FIFO" section in the "Gigabit Ethernet" section in the Transceiver Configurations in Stratix V Devices chapter.
Related Information