Visible to Intel only — GUID: mwh1410384334548
Ixiasoft
1. System Debugging Tools Overview
2. Analyzing and Debugging Designs with System Console
3. Debugging Transceiver Links
4. Quick Design Debugging Using Signal Probe
5. Design Debugging with the Signal Tap Logic Analyzer
6. In-System Debugging Using External Logic Analyzers
7. In-System Modification of Memory and Constants
8. Design Debugging Using In-System Sources and Probes
A. Intel® Quartus® Prime Standard Edition User Guides
2.1. Introduction to System Console
2.2. System Console Debugging Flow
2.3. IP Cores that Interact with System Console
2.4. Starting System Console
2.5. System Console GUI
2.6. System Console Commands
2.7. Running System Console in Command-Line Mode
2.8. System Console Services
2.9. Working with Toolkits
2.10. ADC Toolkit
2.11. System Console Examples and Tutorials
2.12. On-Board Intel® FPGA Download Cable II Support
2.13. MATLAB* and Simulink* in a System Verification Flow
2.14. Deprecated Commands
2.15. Analyzing and Debugging Designs with the System Console Revision History
2.9.6.4.1. toolkit_register
2.9.6.4.2. toolkit_open
2.9.6.4.3. get_quartus_ini
2.9.6.4.4. toolkit_get_context
2.9.6.4.5. toolkit_get_types
2.9.6.4.6. toolkit_get_properties
2.9.6.4.7. toolkit_add
2.9.6.4.8. toolkit_get_property
2.9.6.4.9. toolkit_set_property
2.9.6.4.10. toolkit_remove
2.9.6.4.11. toolkit_get_widget_dimensions
2.9.6.5.1. Widget Types and Properties
2.9.6.5.2. barChart Properties
2.9.6.5.3. button Properties
2.9.6.5.4. checkBox Properties
2.9.6.5.5. comboBox Properties
2.9.6.5.6. dial Properties
2.9.6.5.7. fileChooserButton Properties
2.9.6.5.8. group Properties
2.9.6.5.9. label Properties
2.9.6.5.10. led Properties
2.9.6.5.11. lineChart Properties
2.9.6.5.12. list Properties
2.9.6.5.13. pieChart Properties
2.9.6.5.14. table Properties
2.9.6.5.15. text Properties
2.9.6.5.16. textField Properties
2.9.6.5.17. timeChart Properties
2.9.6.5.18. xyChart Properties
3.1. Channel Manager
3.2. Transceiver Debugging Flow Walkthrough
3.3. Modifying the Design to Enable Transceiver Debug
3.4. Programming the Design into an Intel FPGA
3.5. Loading the Design in the Transceiver Toolkit
3.6. Linking Hardware Resources
3.7. Identifying Transceiver Channels
3.8. Creating Transceiver Links
3.9. Running Link Tests
3.10. Controlling PMA Analog Settings
3.11. User Interface Settings Reference
3.12. Troubleshooting Common Errors
3.13. Scripting API Reference
3.14. Debugging Transceiver Links Revision History
3.3.2.1. Bit Error Rate Test Configuration ( Stratix® V)
3.3.2.2. PRBS Signal Eye Test Configuration ( Stratix® V)
3.3.2.3. Custom Traffic Signal Eye Test Configuration ( Stratix® V)
3.3.2.4. Link Optimization Test Configuration ( Stratix® V)
3.3.2.5. PMA Analog Setting Control Configuration ( Stratix® V)
4.1.1. Perform a Full Compilation
4.1.2. Reserve Signal Probe Pins
4.1.3. Assign Signal Probe Sources
4.1.4. Add Registers Between Pipeline Paths and Signal Probe Pins
4.1.5. Perform a Signal Probe Compilation
4.1.6. Analyze the Results of a Signal Probe Compilation
4.1.7. What a Signal Probe Compilation Does
4.1.8. Understanding the Results of a Signal Probe Compilation
4.2.1. Making a Signal Probe Pin
4.2.2. Deleting a Signal Probe Pin
4.2.3. Enabling a Signal Probe Pin
4.2.4. Disabling a Signal Probe Pin
4.2.5. Performing a Signal Probe Compilation
4.2.6. Reserving Signal Probe Pins
4.2.7. Adding Signal Probe Sources
4.2.8. Assigning I/O Standards
4.2.9. Adding Registers for Pipelining
4.2.10. Running Signal Probe Immediately After a Full Compilation
4.2.11. Running Signal Probe Manually
4.2.12. Enabling or Disabling All Signal Probe Routing
4.2.13. Allowing Signal Probe to Modify Fitting Results
5.1. The Signal Tap Logic Analyzer
5.2. Signal Tap Logic Analyzer Task Flow Overview
5.3. Configuring the Signal Tap Logic Analyzer
5.4. Defining Triggers
5.5. Compiling the Design
5.6. Program the Target Device or Devices
5.7. Running the Signal Tap Logic Analyzer
5.8. View, Analyze, and Use Captured Data
5.9. Other Features
5.10. Design Example: Using Signal Tap Logic Analyzers
5.11. Custom Triggering Flow Application Examples
5.12. Signal Tap Scripting Support
5.13. Design Debugging with the Signal Tap Logic Analyzer Revision History
5.3.1. Assigning an Acquisition Clock
5.3.2. Adding Signals to the Signal Tap File
5.3.3. Adding Signals with a Plug-In
5.3.4. Adding Finite State Machine State Encoding Registers
5.3.5. Specifying Sample Depth
5.3.6. Capture Data to a Specific RAM Type
5.3.7. Select the Buffer Acquisition Mode
5.3.8. Specifying Pipeline Settings
5.3.9. Filtering Relevant Samples
5.3.10. Manage Multiple Signal Tap Files and Configurations
5.5.1. Faster Compilations with Intel® Quartus® Prime Incremental Compilation
5.5.2. Prevent Changes Requiring Recompilation
5.5.3. Verify Whether You Need to Recompile Your Project
5.5.4. Incremental Route with Rapid Recompile
5.5.5. Timing Preservation with the Signal Tap Logic Analyzer
5.5.6. Performance and Resource Considerations
5.8.1. Capturing Data Using Segmented Buffers
5.8.2. Differences in Pre-Fill Write Behavior Between Different Acquisition Modes
5.8.3. Creating Mnemonics for Bit Patterns
5.8.4. Automatic Mnemonics with a Plug-In
5.8.5. Locating a Node in the Design
5.8.6. Saving Captured Data
5.8.7. Exporting Captured Data to Other File Formats
5.8.8. Creating a Signal Tap List File
5.9.1. Creating Signal Tap File from Design Instances
5.9.2. Using the Signal Tap MATLAB* MEX Function to Capture Data
5.9.3. Using Signal Tap in a Lab Environment
5.9.4. Remote Debugging Using the Signal Tap Logic Analyzer
5.9.5. Using the Signal Tap Logic Analyzer in Devices with Configuration Bitstream Security
5.9.6. Monitor FPGA Resources Used by the Signal Tap Logic Analyzer
6.1. About the Intel® Quartus® Prime Logic Analyzer Interface
6.2. Choosing a Logic Analyzer
6.3. Flow for Using the LAI
6.4. Controlling the Active Bank During Runtime
6.5. Using the LAI with Incremental Compilation
6.6. LAI Core Parameters
6.7. In-System Debugging Using External Logic Analyzers Revision History
7.2.1. Instance Manager
7.2.2. Editing Data Displayed in the Hex Editor Pane
7.2.3. Importing and Exporting Memory Files
7.2.4. Scripting Support
7.2.5. Programming the Device with the In-System Memory Content Editor
7.2.6. Example: Using the In-System Memory Content Editor with the Signal Tap Logic Analyzer
8.1. Hardware and Software Requirements
8.2. Design Flow Using the In-System Sources and Probes Editor
8.3. Compiling the Design
8.4. Running the In-System Sources and Probes Editor
8.5. Tcl interface for the In-System Sources and Probes Editor
8.6. Design Example: Dynamic PLL Reconfiguration
8.7. Design Debugging Using In-System Sources and Probes Revision History
Visible to Intel only — GUID: mwh1410384334548
Ixiasoft
3.3.1.1. Modifying Stratix® V Design Examples
You can adapt Intel FPGA design examples to experiment with configurations that match your own design. For example, you can change data rate, number of lanes, PCS-PMA width, FPGA-fabric interface width, or input reference clock frequency. To modify the design examples, change the IP core parameters and regenerate the system in Platform Designer (Standard). Next, update the top-level design file, and re-assign device I/O pins as necessary.
To modify a Stratix® V design example PHY block to match your design, follow these steps:
- Determine the number of channels your design requires.
- Open the <project name> .qpf for the design example in the Intel® Quartus® Prime software.
- Click Tools > Platform Designer (Standard) .
- On the System Contents tab, right-click the PHY block and click Edit. Specify options for the PHY block to match your design requirement for number of lanes, data rate, PCS-PMA width, FPGA-fabric interface width, and input reference clock frequency.
- Specify a multiple of the FPGA-fabric interface data width for Avalon® Data Symbol Size. The available values are 8 or 10. Click Finish.
- Delete any timing adapter from the design. The timing adapters are not required.
- From the IP Catalog, add one Data Pattern Generator and Data Pattern Checker for each transmitter and receiver lane.
- Right-click Data Pattern Generator and click Edit. Specify a value for ST_DATA_W that matches the FPGA-fabric interface width.
- Right-click Data Pattern Checker and click Edit. Specify a value for ST_DATA_W that matches the FPGA-fabric interface width.
- From the IP Catalog, add a Transceiver Reconfiguration Controller.
- Right-click Transceiver Reconfiguration Controller and click Edit. Specify 2* number of lanes for the number of reconfigurations interfaces. Click finish.
- Create connections for the data pattern generator and data pattern checker components. Right-click the net name in the System Contents tab and specify the following connections.
From To Block Name Net Name Block Name Net Name clk_100 clk data_pattern_generator csr_clk clk_100 clk_reset data_pattern_generator csr_clk_reset master_0 master data_pattern_generator csr_slave xcvr_*_phy_0 tx_clk_out0 data_pattern_generator pattern_out_clk xcvr_*_phy_0 tx_parallel_data0 data_pattern_generator pattern_out clk_100 clk data_pattern_checker csr_clk clk_100 clk_reset data_pattern_checker csr_clk_reset master_0 master data_pattern_checker csr_slave xcvr_*_phy_0 rx_clk_out0 data_pattern_checker pattern_in_clk xcvr_*_phy_0 rx_parallel_data0 data_pattern_checker pattern_in - Click System > Assign Base Addresses.
- Connect the reset port of timing adapters to clk_reset of clk_100.
- To implement the changes to the system, click Generate > Generate HDL.
- If you modify the number of lanes in the PHY, you must update the top-level file accordingly. The following example shows Verilog HDL code for a two-channel design that declares input and output ports in the top-level design. The example design includes the low latency PHY IP core. If you modify the PHY parameters, you must modify the top-level design with the correct port names. Platform Designer (Standard) displays an example of the PHY, click Generate > HDL Example.
module low_latency_10g_1ch DUT ( input wire GXB_RXL11, input wire GXB_RXL12, output wire GXB_TXL11, output wire GXB_TX12 ); ..... low_latency_10g_1ch DUT ( ..... .xcvr_low_latency_phy_0_tx_serial_data_export ({GXB_TXL11, GXB_TXL12}), .xcvr_low_latency_phy_0_rx_serial_data_export ({GXB_RXL11, GXB_TXL12}), ..... );
- From the Intel® Quartus® Prime software, click Assignments > Pin Planner and update pin assignments to match your board.
- Edit the design’s Synopsys Design Constraints (.sdc) to reflect the reference clock change. Ignore the reset warning messages.
- Click Start > Start Compilation to recompile the design.