Visible to Intel only — GUID: dsu1455757734157
Ixiasoft
Product Discontinuance Notification
1. About the RapidIO II Intel® FPGA IP
2. Getting Started
3. Parameter Settings
4. Functional Description
5. Signals
6. Software Interface
7. Testbench
8. RapidIO II IP Core User Guide Archives
9. Document Revision History for the RapidIO II Intel® FPGA IP User Guide
A. Initialization Sequence
B. Differences Between RapidIO II IP Core and RapidIO IP Core
2.1. Installing and Licensing Intel® FPGA IP Cores
2.2. Intel® FPGA IP Evaluation Mode
2.32.4. Generating IP Cores2.32.4. Generating IP Cores
2.32.4. Generating IP Cores2.32.4. Generating IP Cores
2.5. RapidIO II IP Core Testbench Files
2.6. Simulating IP Cores
2.7. Integrating Your IP Core in Your Design
2.8. Compiling the Full Design and Programming the FPGA
2.9. Instantiating Multiple RapidIO II IP Cores in V-series FPGA devices
3.4.1. Device Identity CAR
3.4.2. Device Information CAR
3.4.3. Assembly Identity CAR
3.4.4. Assembly Information CAR
3.4.5. Processing Element Features CAR
3.4.6. Switch Port Information CAR
3.4.7. Switch Route Table Destination ID Limit CAR
3.4.8. Data Streaming Information CAR
3.4.9. Source Operations CAR
3.4.10. Destination Operations CAR
4.3.3.1. Maintenance Interface Transactions
4.3.3.2. Maintenance Interface Signals
4.3.3.3. Initiating MAINTENANCE Read and Write Transactions
4.3.3.4. Defining the Maintenance Address Translation Windows
4.3.3.5. Responding to MAINTENANCE Read and Write Requests
4.3.3.6. Handling Port-Write Transactions
4.3.3.7. Maintenance Interface Transaction Examples
4.3.3.8. Maintenance Packet Error Handling
4.3.5.3.1. User Sending Write Request
4.3.5.3.2. User Receiving Write Request
4.3.5.3.3. User Sending Read Request and Receiving Read Response
4.3.5.3.4. User Receiving Read Request and Sending Read Response
4.3.5.3.5. User Sending Streaming Write Request
4.3.5.3.6. User Receiving Streaming Write Request
6.1.1. CAR Memory Map
6.1.2. CSR Memory Map
6.1.3. LP-Serial Extended Features Block Memory Map
6.1.4. LP-Serial Lane Extended Features Block Memory Map
6.1.5. Error Management Extensions Extended Features Block Memory Map
6.1.6. Maintenance Module Registers Memory Map
6.1.7. I/O Logical Layer Master Module Registers Memory Map
6.1.8. I/O Logical Layer Slave Module Registers Memory Map
6.1.9. Doorbell Module Registers Memory Map
6.2.1.1. LP-Serial Register Block Header
6.2.1.2. Port Link Time-out Control CSR
6.2.1.3. Port Response Time-out Control CSR
6.2.1.4. Port General Control CSR
6.2.1.5. Port 0 Link Maintenance Request CSR
6.2.1.6. Port 0 Link Maintenance Response CSR
6.2.1.7. Port 0 Local AckID CSR
6.2.1.8. Port 0 Control 2 CSR
6.2.1.9. Port 0 Error and Status CSR
6.2.1.10. Port 0 Control CSR
6.3.1.1. CAR Memory Map
6.3.1.2. Device Identity CAR
6.3.1.3. Device Information CAR
6.3.1.4. Assembly Identity CAR
6.3.1.5. Assembly Information CAR
6.3.1.6. Processing Element Features CAR
6.3.1.7. Switch Port Information CAR
6.3.1.8. Source Operations CAR
6.3.1.9. Destination Operations CAR
6.3.1.10. Switch Route Table Destination ID Limit CAR
6.3.1.11. Data Streaming Information CAR
6.3.2.1. CSR Memory Map
6.3.2.2. Data Streaming Logical Layer Control CSR
6.3.2.3. Processing Element Logical Layer Control CSR
6.3.2.4. Local Configuration Space Base Address 0 CSR
6.3.2.5. Local Configuration Space Base Address 1 CSR
6.3.2.6. Base Device ID CSR
6.3.2.7. Host Base Device ID Lock CSR
6.3.2.8. Component Tag CSR
6.3.6.1. Error Management Extensions Extended Features Block Memory Map
6.3.6.2. Error Management Extensions Block Header
6.3.6.3. Logical/Transport Layer Error Detect
6.3.6.4. Logical/Transport Layer Error Enable
6.3.6.5. Logical/Transport Layer Address Capture
6.3.6.6. Logical/Transport Layer Device ID Capture
6.3.6.7. Logical/Transport Layer Control Capture
6.3.6.8. Port-Write Target Device ID
6.3.6.9. Packet Time-to-Live
6.3.6.10. Port 0 Error Detect
6.3.6.11. Port 0 Error Rate Enable
6.3.6.12. Port 0 Attributes Capture
6.3.6.13. Port 0 Packet/Control Symbol Capture 0
6.3.6.14. Port 0 Packet Capture 1
6.3.6.15. Port 0 Packet Capture 2
6.3.6.16. Port 0 Packet Capture 3
6.3.6.17. Port 0 Error Rate
6.3.6.18. Port 0 Error Rate Threshold
7.2.1. Reset, Initialization, and Configuration
7.2.2. Maintenance Write and Read Transactions
7.2.3. SWRITE Transactions
7.2.4. NREAD Transactions
7.2.5. NWRITE_R Transactions
7.2.6. NWRITE Transactions
7.2.7. Doorbell Transactions
7.2.8. Port-Write Transactions
7.2.9. Transactions Across the AVST Pass-Through Interface
Visible to Intel only — GUID: dsu1455757734157
Ixiasoft
4.3.5.3.5. User Sending Streaming Write Request
User Operation | Operation Type | RapidIO Transaction | Priority | Device ID Width | Payload Size (Bytes) |
---|---|---|---|---|---|
Send streaming write request | Tx | SWRITE | 3 | 8 | 40 |
In the first clock cycle of the example, the IP core asserts gen_tx_ready to indicate it is ready to sample data. In the same cycle, user logic asserts gen_tx_valid. Because both gen_tx_ready and gen_tx_valid are asserted, this clock cycle is an Avalon® -ST ready cycle. The user logic provides valid data on gen_tx_data for the IP core to sample, and asserts gen_tx_startofpacket to indicate the current value of gen_tx_data is the initial piece of the current packet (the start of packet). On gen_tx_packet_size, user logic reports the full length of the packet is 0x30, which is decimal 48, because the packet comprises eight bytes of header and 40 bytes of payload data.
Figure 35. Avalon® -ST Pass-Through Interface SWRITE Transmit Example
The user logic provides the 40-byte payload and 8-byte header on the same bus, gen_tx_data[127:0]. Transferring these 48 bytes of information requires three clock cycles. During all of these cycles, the IP core holds gen_tx_ready high and user logic holds gen_tx_valid high, indicating the cycles are all Avalon® -ST ready cycles. In the second cycle, user logic holds gen_tx_startofpacket and gen_tx_endofpacket low, because the information on gen_tx_data is neither start of packet nor end of packet data. In the third clock cycle, user logic asserts gen_tx_endofpacket and sets gen_tx_empty to the value of 0x0 to indicate that all of the bytes of data available on gen_tx_data in the current clock cycle are valid.
In this example, the IP core does not deassert gen_tx_ready following the three ready cycles, indicating that it is ready to accept an additional transaction whenever user logic is ready to send an additional transaction. Whether or not the IP core deasserts gen_tx_ready following the three Avalon® -ST ready cycles, the next cycle is not a ready cycle, because user logic has deasserted gen_tx_valid. The initial eight bytes of the packet contain header information.
Field | gen_tx_data Bits | Value | Comment |
---|---|---|---|
ackID | [127:122] | 6'h00 | Value is a don’t care, because it is overwritten by the Physical layer ackID value before the packet is transmitted on the RapidIO link. |
VC | [121] | 0 | The RapidIO II IP core supports only VC0. |
CRF | [120] | 0 | This bit sets packet priority together with prio if CRF is supported. This bit is reserved if VC=0 and CRF is not supported. |
prio[1:0] | [119:118] | 2'b11 | Specifies packet priority. |
tt[1:0] | [117:116] | 2'b00 | The value of 0 indicates 8-bit device IDs. |
ftype[3:0] | [115:112] | 4'b0110 | The value of 6 indicates a Streaming-Write Class packet. |
destinationId[7:0] | [111:104] | 8'hDD | Indicates the ID of the target. |
sourceId[7:0] | [103:96] | 8'hAA | Indicates the ID of the source. |
address[28:0] | [95:67] | {28’h0AABBCC, 1’b1} | |
wdptr | [66] | 1 | Not used for SWRITE transactions. |
xamsbs[1:0] | [65:64] | 2’b00 | Specifies most significant bits of extended address. Further extends the address specified by the address fields by 2 bits. |