Developer Reference for Intel® oneAPI Math Kernel Library for Fortran

ID 766686
Date 7/13/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

?gemv_batch

Computes groups of matrix-vector product with general matrices.

Syntax

call sgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array, x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)

call dgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array, x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)

call cgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array, x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)

call zgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array, x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)

Include Files

  • mkl.fi

Description

The ?gemv_batch routines perform a series of matrix-vector product added to a scaled vector. They are similar to the ?gemv routine counterparts, but the ?gemv_batch routines perform matrix-vector operations with groups of matrices and vectors.

Each group contains matrices and vectors with the same parameters (size, increments). The operation is defined as:

idx = 0
For i = 0 … group_count – 1
    trans, m, n, alpha, lda, incx, beta, incy and group_size at position i in trans_array, m_array, n_array, alpha_array, lda_array, incx_array, beta_array, incy_array and group_size_array
    for j = 0 … group_size – 1
        a is a matrix of size mxn at position idx in a_array
        x and y are vectors of size m or n depending on trans, at position idx in x_array and y_array
        y := alpha * op(a) * x + beta * y
        idx := idx + 1
    end for
end for

The number of entries in a_array, x_array, and y_array is total_batch_count = the sum of all of the group_size entries.

Input Parameters

trans_array

CHARACTER*1.

Array of size group_count. For the group i, transi = trans_array[i] specifies the transposition operation applied to A.

if trans = 'N' or 'n' , then op(A) = A;

if trans = 'T' or 't' , then op(A) = A';

if trans = 'C' or 'c' , then op(A) = conjg(A').

m_array

INTEGER. Array of size group_count. For the group i, mi = m_array[i] is the number of rows of the matrix A.

n_array

INTEGER. Array of size group_count. For the group i, ni = n_array[i] is the number of columns in the matrix A.

alpha_array

REAL for sgemv_batch

DOUBLE PRECISION for dgemv_batch

COMPLEX for cgemv_batch

DOUBLE COMPLEX for zgemv_batch

Array of size group_count. For the group i, alphai = alpha_array[i] is the scalar alpha.

a_array

INTEGER*8 for Intel® 64 architecture

INTEGER*4 for IA32 architecture

Array of size total_batch_count of pointers used to store A matrices. The array allocated for the A matrices of the group i must be of size at least ldai * ni if column major layout is used or at least ldai * mi is row major layout is used.

lda_array

INTEGER. Array of size group_count. For the group i, ldai = lda_array[i] is the leading dimension of the matrix A. It must be positive and at least mi .

x_array

INTEGER*8 for Intel® 64 architecture

INTEGER*4 for IA32 architecture

Array of size total_batch_count of pointers used to store x vectors. The array allocated for the x vectors of the group i must be of size at least (1 + leni – 1)*abs(incxi)) where leni is ni if the A matrix is not transposed or mi otherwise.

incx_array

INTEGER. Array of size group_count. For the group i, incxi = incx_array[i] is the stride of vector x. Must not be zero.

beta_array

REAL for sgemv_batch

DOUBLE PRECISION for dgemv_batch

COMPLEX for cgemv_batch

DOUBLE COMPLEX for zgemv_batch

Array of size group_count. For the group i, betai = beta_array[i] is the scalar beta.

y_array

INTEGER*8 for Intel® 64 architecture

INTEGER*4 for IA32 architecture

Array of size total_batch_count of pointers used to store y vectors. The array allocated for the y vectors of the group i must be of size at least (1 + leni – 1)*abs(incyi)) where leni is mi if the A matrix is not transposed or ni otherwise.

incy_array

INTEGER.

Array of size group_count. For the group i, incyi = incy_array[i] is the stride of vector y. Must not be zero.

group_count

INTEGER.

Number of groups. Must be at least 0.

group_size

INTEGER.

Array of size group_count. The element group_count[i] is the number of operations in the group i. Each element in group_count must be at least 0.

Output Parameters

y_array
Array of pointers holding the total_batch_count updated vector y.