Visible to Intel only — GUID: GUID-D5BF8843-74E1-4386-98D8-FDE19079E545
Visible to Intel only — GUID: GUID-D5BF8843-74E1-4386-98D8-FDE19079E545
sbmv
Computes a matrix-vector product with a symmetric band matrix.
Description
The sbmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a symmetric band matrix. The operation is defined as:
where:
alpha and beta are scalars
A is n x n symmetric matrix with k super-diagonals
x and y are vectors of length n
sbmv supports the following precisions:
T |
---|
float |
double |
sbmv (Buffer Version)
Syntax
namespace oneapi::mkl::blas::column_major { void sbmv(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t k, T alpha, sycl::buffer<T,1> &a, std::int64_t lda, sycl::buffer<T,1> &x, std::int64_t incx, T beta, sycl::buffer<T,1> &y, std::int64_t incy) }
namespace oneapi::mkl::blas::row_major { void sbmv(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t k, T alpha, sycl::buffer<T,1> &a, std::int64_t lda, sycl::buffer<T,1> &x, std::int64_t incx, T beta, sycl::buffer<T,1> &y, std::int64_t incy) }
Input Parameters
- queue
-
The queue where the routine should be executed.
- upper_lower
-
Specifies whether matrix A is upper or lower triangular. See Data Types for more details.
- n
-
Number of rows and columns of matrix A. Must be at least zero.
- k
-
Number of super-diagonals of matrix A. Must be at least zero.
- alpha
-
Scaling factor for the matrix-vector product.
- a
-
Buffer holding input matrix A. Size of the buffer must be at least lda * n. See ref:matrix-storage for more details.
- lda
-
Leading dimension of matrix A. Must be at least (k + 1) and positive.
- x
-
Buffer holding input vector x. Size of the buffer must be at least (1 + (n - 1)*abs(incx)). See ref:matrix-storage for more details.
- incx
-
Stride of vector x. Must not be zero.
- beta
-
Scaling factor for vector y.
- y
-
Buffer holding input/output vector y. Size of the buffer must be at least (1 + (n - 1)*abs(incy)). See ref:matrix-storage for more details.
- incy
-
Stride of vector y. Must not be zero.
Output Parameters
- y
-
Buffer holding updated vector y.
sbmv (USM Version)
Syntax
namespace oneapi::mkl::blas::column_major { sycl::event sbmv(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t k, T alpha, const T *a, std::int64_t lda, const T *x, std::int64_t incx, T beta, T *y, std::int64_t incy, const std::vector<sycl::event> &dependencies = {}) }
namespace oneapi::mkl::blas::row_major { sycl::event sbmv(sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t k, T alpha, const T *a, std::int64_t lda, const T *x, std::int64_t incx, T beta, T *y, std::int64_t incy, const std::vector<sycl::event> &dependencies = {}) }
Input Parameters
- queue
-
The queue where the routine should be executed.
- upper_lower
-
Specifies whether matrix A is upper or lower triangular. See Data Types for more details.
- n
-
Number of rows and columns of matrix A. Must be at least zero.
- k
-
Number of super-diagonals of matrix A. Must be at least zero.
- alpha
-
Scaling factor for the matrix-vector product.
- a
-
Pointer to input matrix A. Size of the array holding input matrix A must be at least lda * n. See ref:matrix-storage for more details.
- lda
-
Leading dimension of matrix A. Must be at least (k + 1) and positive.
- x
-
Pointer to input vector x. Size of the array holding input vector x must be at least (1 + (n - 1)*abs(incx)). See ref:matrix-storage for more details.
- incx
-
Stride of vector x. Must not be zero.
- beta
-
Scaling factor for vector y.
- y
-
Pointer to input/output vector y. Size of the array holding input/output vector y must be at least (1 + (n - 1)*abs(incy)). See ref:matrix-storage for more details.
- incy
-
Stride of vector y. Must not be zero.
- dependencies
-
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- y
-
Pointer to updated vector y.
Return Values
Output event to wait on to ensure computation is complete.