Visible to Intel only — GUID: GUID-776544BE-5C46-41DF-AA5A-1AD7AF1C0AE2
Visible to Intel only — GUID: GUID-776544BE-5C46-41DF-AA5A-1AD7AF1C0AE2
mkl_sparse_?_mm
Computes the product of a sparse matrix and a dense matrix and stores the result as a dense matrix.
Syntax
sparse_status_t mkl_sparse_s_mm (const sparse_operation_t operation, const float alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t layout, const float *B, const MKL_INT columns, const MKL_INT ldb, const float beta, float *C, const MKL_INT ldc);
sparse_status_t mkl_sparse_d_mm (const sparse_operation_t operation, const double alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t layout, const double *B, const MKL_INT columns, const MKL_INT ldb, const double beta, double *C, const MKL_INT ldc);
sparse_status_t mkl_sparse_c_mm (const sparse_operation_t operation, const MKL_Complex8 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t layout, const MKL_Complex8 *B, const MKL_INT columns, const MKL_INT ldb, const MKL_Complex8 beta, MKL_Complex8 *C, const MKL_INT ldc);
sparse_status_t mkl_sparse_z_mm (const sparse_operation_t operation, const MKL_Complex16 alpha, const sparse_matrix_t A, const struct matrix_descr descr, const sparse_layout_t layout, const MKL_Complex16 *B, const MKL_INT columns, const MKL_INT ldb, const MKL_Complex16 beta, MKL_Complex16 *C, const MKL_INT ldc);
Include Files
- mkl_spblas.h
Description
The mkl_sparse_?_mm routine performs a matrix-matrix operation:
C := alpha*op(A)*B + beta*C
where alpha and beta are scalars, A is a sparse matrix, op is a matrix modifier for matrix A, and B and C are dense matrices.
The mkl_sparse_?_mm and mkl_sparse_?_trsm routines support these configurations:
Column-major dense matrix: layout = SPARSE_LAYOUT_COLUMN_MAJOR |
Row-major dense matrix: layout = SPARSE_LAYOUT_ROW_MAJOR |
|
0-based sparse matrix: SPARSE_INDEX_BASE_ZERO |
CSR BSR: general non-transposed matrix multiplication only |
All formats |
1-based sparse matrix: SPARSE_INDEX_BASE_ONE |
All formats |
CSR BSR: general non-transposed matrix multiplication only |
For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:
(SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR )
(SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR )
Input Parameters
- operation
-
Specifies operation op() on input matrix.
SPARSE_OPERATION_NON_TRANSPOSE
Non-transpose, op(A) = A.
SPARSE_OPERATION_TRANSPOSE
Transpose, op(A) = AT.
SPARSE_OPERATION_CONJUGATE_TRANSPOSE
Conjugate transpose, op(A) = AH.
- alpha
-
Specifies the scalar alpha.
- A
-
Handle which contains the sparse matrix A.
- descr
-
Structure specifying sparse matrix properties.
sparse_matrix_type_t type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GENERAL
The matrix is processed as is.
SPARSE_MATRIX_TYPE_SYMMETRIC
The matrix is symmetric (only the requested triangle is processed).
SPARSE_MATRIX_TYPE_HERMITIAN
The matrix is Hermitian (only the requested triangle is processed).
SPARSE_MATRIX_TYPE_TRIANGULAR
The matrix is triangular (only the requested triangle is processed).
SPARSE_MATRIX_TYPE_DIAGONAL
The matrix is diagonal (only diagonal elements are processed).
SPARSE_MATRIX_TYPE_BLOCK_TRIANGULAR
The matrix is block-triangular (only requested triangle is processed). Applies to BSR format only.
SPARSE_MATRIX_TYPE_BLOCK_DIAGONAL
The matrix is block-diagonal (only diagonal blocks are processed). Applies to BSR format only.
sparse_fill_mode_t mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWER
The lower triangular matrix part is processed.
SPARSE_FILL_MODE_UPPER
The upper triangular matrix part is processed.
sparse_diag_type_t diag - Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT
Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT
Diagonal elements are equal to one. - layout
-
Describes the storage scheme for the dense matrix:
SPARSE_LAYOUT_COLUMN_MAJOR
Storage of elements uses column major layout.
SPARSE_LAYOUT_ROW_MAJOR
Storage of elements uses row major layout.
- B
-
Array of size at least rows*cols.
layout = SPARSE_LAYOUT_COLUMN_MAJOR
layout = SPARSE_LAYOUT_ROW_MAJOR
rows (number of rows in B)
ldb
If op(A) = A, number of columns in A
If op(A) = AT, number of rows in A
cols (number of columns in B)
columns
ldb
- columns
-
Number of columns of matrix C.
- ldb
-
Specifies the leading dimension of matrix B.
- beta
-
Specifies the scalar beta
- C
-
Array of size at least rows*cols, where
layout = SPARSE_LAYOUT_COLUMN_MAJOR
layout = SPARSE_LAYOUT_ROW_MAJOR
rows (number of rows in C)
ldc
If op(A) = A, number of rows in A
If op(A) = AT, number of columns in A
cols (number of columns in C)
columns
ldc
- ldc
-
Specifies the leading dimension of matrix C.
Output Parameters
- C
-
Overwritten by the updated matrix C.
Return Values
The function returns a value indicating whether the operation was successful or not, and why.
SPARSE_STATUS_SUCCESS |
The operation was successful. |
SPARSE_STATUS_NOT_INITIALIZED |
The routine encountered an empty handle or matrix array. |
SPARSE_STATUS_ALLOC_FAILED |
Internal memory allocation failed. |
SPARSE_STATUS_INVALID_VALUE |
The input parameters contain an invalid value. |
SPARSE_STATUS_EXECUTION_FAILED |
Execution failed. |
SPARSE_STATUS_INTERNAL_ERROR |
An error in algorithm implementation occurred. |
SPARSE_STATUS_NOT_SUPPORTED |
The requested operation is not supported. |