Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 11/07/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?skymm

Computes matrix-matrix product of a sparse matrix stored using the skyline storage scheme with one-based indexing (deprecated).

Syntax

void mkl_sskymm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const float *alpha , const char *matdescra , const float *val , const MKL_INT *pntr , const float *b , const MKL_INT *ldb , const float *beta , float *c , const MKL_INT *ldc );

void mkl_dskymm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const double *alpha , const char *matdescra , const double *val , const MKL_INT *pntr , const double *b , const MKL_INT *ldb , const double *beta , double *c , const MKL_INT *ldc );

void mkl_cskymm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *pntr , const MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *c , const MKL_INT *ldc );

void mkl_zskymm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *pntr , const MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta , MKL_Complex16 *c , const MKL_INT *ldc );

Include Files

  • mkl.h

Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?skymm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*AT*B + beta*C,

or

C := alpha*AH*B + beta*C,

where:

alpha and beta are scalars,

B and C are dense matrices, A is an m-by-k sparse matrix in the skyline storage format, AT is the transpose of A, and AH is the conjugate transpose of A.

NOTE:

This routine supports only one-based indexing of the input arrays.

Input Parameters

transa

Specifies the operation.

If transa = 'N' or 'n', then C := alpha*A*B + beta*C,

If transa = 'T' or 't', then C := alpha*AT*B + beta*C,

If transa = 'C' or 'c', then C := alpha*AH*B + beta*C.

m

Number of rows of the matrix A.

n

Number of columns of the matrix C.

k

Number of columns of the matrix A.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

NOTE:

General matrices (matdescra [0]='G') is not supported.

val

Array containing the set of elements of the matrix A in the skyline profile form.

If matdescrsa[2]= 'L', then val contains elements from the low triangle of the matrix A.

If matdescrsa[2]= 'U', then val contains elements from the upper triangle of the matrix A.

Refer to values array description in Skyline Storage Scheme for more details.

pntr

Array of length (m + 1) for lower triangle, and (k + 1) for upper triangle.

It contains the indices specifying the positions of the first element of the matrix A in each row (for the lower triangle) or column (for upper triangle) in the val array such that val[pntr[i] - 1] is the first element in row or column i + 1. Refer to pointers array description in Skyline Storage Scheme for more details.

b

Array, size ldb* n.

On entry with transa = 'N' or 'n', the leading k-by-n part of the array b must contain the matrix B, otherwise the leading m-by-n part of the array b must contain the matrix B.

ldb

Specifies the leading dimension of b as declared in the calling (sub)program.

beta

Specifies the scalar beta.

c

Array, size ldc by n.

On entry, the leading m-by-n part of the array c must contain the matrix C, otherwise the leading k-by-n part of the array c must contain the matrix C.

ldc

Specifies the leading dimension of c as declared in the calling (sub)program.

Output Parameters

c

Overwritten by the matrix (alpha*A*B + beta*C), (alpha*AT*B + beta*C), or (alpha*AH*B + beta*C).