Visible to Intel only — GUID: GUID-4D10F490-3207-4D88-B4BF-59852B58157D
Visible to Intel only — GUID: GUID-4D10F490-3207-4D88-B4BF-59852B58157D
Batch-Reduce General Matrix Multiplication
General
The batch-reduce General Matrix Multiplication ukernel (BRGeMM) is an operation that computes a small matrix multiplication batch and accumulates their results in the same destination.
with
a set of matrices of dimension
a set of matrices of dimension
matrix of dimension .
The BRGeMM ukernel also supports accumulation with values already present in , as well as post-operation and down-conversion to another matrix:
Data Types
In general, C represents an accumulation buffer. Hence, when computations are carried in floating-point arithmetic, C shall be of type f32; when computation is carried in integer arithmetic, C should be of type s32.
The BRGeMM ukernel supports the following combinations of data-types.
A |
B |
C |
D |
---|---|---|---|
f32 |
f32 |
f32 |
u8, s8, s32, f32, f16, bf16 |
f16 |
f16 |
f32 |
u8, s8, s32, f32, f16, bf16 |
bf16 |
bf16 |
f32 |
u8, s8, s32, f32, f16, bf16 |
u8, s8 |
u8, s8 |
s32 |
u8, s8, s32, f32, f16, bf16 |
Data Representation
Because of hardware restrictions, the BRGeMM ukernel requires a specific data layout. For x86-64 architecture this layout applies to a B matrix. It is expressed through dnnl::ukernel::pack_type which can be queried by dnnl::ukernel::brgemm::get_B_pack_type call. If the query returns dnnl::ukernel::pack_type::no_trans, then packing is not required. Otherwise, the user is responsible for packing the data appropriately before calling dnnl::ukernel::brgemm::execute, either with custom code, or by using a dedicated set of APIs: dnnl::ukernel::transform::generate for generating a kernel of a transform routine and dnnl::ukernel::transform::execute to run the generated kernel.
Attributes
The following ukernel attributes can be set through dedicated setters.
Implementation limitations
BRGeMM ukernel has no known limitations.
Examples
This C++ API example demonstrates how to create and execute a BRGeMM ukernel.
/*******************************************************************************
* Copyright 2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <utility>
#include <vector>
#include "example_utils.hpp"
#include "oneapi/dnnl/dnnl_ukernel.hpp"
using namespace dnnl;
using namespace dnnl::ukernel;
using tag = memory::format_tag;
using dt = memory::data_type;
void brgemm_example() {
// Create execution dnnl::engine. Needed for reorders to operate over input
// data.
dnnl::engine engine(engine::kind::cpu, 0);
// Create dnnl::stream. Needed for reorders for the same reason.
dnnl::stream engine_stream(engine);
// ukernel dimensions.
// K is for a whole tensor, K_k is for a single ukernel.
const memory::dim M = 8, K = 128, K_k = 64, N = 48;
if (K % K_k != 0) {
printf("K_k must divide K.\n");
return;
}
const memory::dim n_calls = K / K_k;
const memory::dim lda = K;
const memory::dim ldb = N;
const memory::dim ldc = N; // Leading dimension for accumulator.
const memory::dim ldd = N; // Leading dimension for an actual output.
const memory::dim batch_size = n_calls - 1;
memory::data_type a_dt = dt::u8;
memory::data_type b_dt = dt::s8;
memory::data_type c_dt = dt::s32; // Accumulator data type.
memory::data_type d_dt = dt::f32; // Output data type.
// A, B, and C tensors dimensions.
memory::dims A_dims = {M, K};
memory::dims B_dims = {K, N};
memory::dims C_dims = {M, N};
memory::dims D_dims = {M, N};
memory::dims binary_add_dims = {1, 1};
memory::dims B_scales_dims = {1, N};
// Allocate buffers with user data.
std::vector<float> A_user_data(product(A_dims));
std::vector<float> B_user_data(product(B_dims));
std::vector<float> binary_add_user_data(product(binary_add_dims));
std::vector<float> B_scales_user_data(product(B_scales_dims));
std::vector<float> D_data(product(D_dims)); // For reference comparison
std::vector<float> D_user_data(product(D_dims)); // For reference comparison
// Initialize A.
std::generate(A_user_data.begin(), A_user_data.end(), []() {
static int i = 0;
return i++ % 4;
});
// Initialize B.
std::generate(B_user_data.begin(), B_user_data.end(), []() {
static int i = 6;
static int sign_gen = 0;
int sign = (sign_gen++ % 2) ? -1 : 1;
float val = sign * (i++ % 5);
return val;
});
// Initialize binary_add.
std::generate(
binary_add_user_data.begin(), binary_add_user_data.end(), []() {
static int i = 3;
return i++ % 6;
});
// Initialize B scales.
std::generate(B_scales_user_data.begin(), B_scales_user_data.end(), []() {
static int i = 4;
return (float)(i++ % 16) / 8.f;
});
// Create f32 memories. They are used as data holders and reorder into
// memories passed to the ukernel.
auto A_f32_md = memory::desc(A_dims, dt::f32, tag::ab);
auto B_f32_md = memory::desc(B_dims, dt::f32, tag::ab);
auto binary_add_f32_md = memory::desc(binary_add_dims, dt::f32, tag::ab);
auto B_scales_f32_md = memory::desc(B_scales_dims, dt::f32, tag::ab);
auto D_f32_md = memory::desc(D_dims, dt::f32, tag::ab);
auto A_f32_mem = memory(A_f32_md, engine, A_user_data.data());
auto B_f32_mem = memory(B_f32_md, engine, B_user_data.data());
auto binary_add_f32_mem
= memory(binary_add_f32_md, engine, binary_add_user_data.data());
auto B_scales_f32_mem
= memory(B_scales_f32_md, engine, B_scales_user_data.data());
auto D_f32_mem = memory(D_f32_md, engine, D_user_data.data());
// Create ukernel memories in requested data types.
// Note that all formats are `ab`.
auto A_md = memory::desc(A_dims, a_dt, tag::ab);
auto B_md = memory::desc(B_dims, b_dt, tag::ab);
auto binary_add_md = memory::desc(binary_add_dims, dt::f32, tag::ab);
auto B_scales_md = memory::desc(B_scales_dims, dt::f32, tag::ab);
auto C_md = memory::desc(C_dims, c_dt, tag::ab);
auto D_md = memory::desc(D_dims, d_dt, tag::ab);
auto A_mem = memory(A_md, engine);
auto B_mem = memory(B_md, engine);
auto binary_add_mem = memory(binary_add_md, engine);
auto B_scales_mem = memory(B_scales_md, engine);
auto C_mem = memory(C_md, engine);
auto D_mem = memory(D_md, engine);
const auto *A_ptr = reinterpret_cast<uint8_t *>(A_mem.get_data_handle());
auto *B_ptr = reinterpret_cast<uint8_t *>(B_mem.get_data_handle());
const size_t a_dt_size
= memory::data_type_size(A_mem.get_desc().get_data_type());
const size_t b_dt_size
= memory::data_type_size(B_mem.get_desc().get_data_type());
// Reorder user data into buffers passed to ukernels in target data types.
reorder(A_f32_mem, A_mem).execute(engine_stream, A_f32_mem, A_mem);
reorder(B_f32_mem, B_mem).execute(engine_stream, B_f32_mem, B_mem);
reorder(binary_add_f32_mem, binary_add_mem)
.execute(engine_stream, binary_add_f32_mem, binary_add_mem);
reorder(B_scales_f32_mem, B_scales_mem)
.execute(engine_stream, B_scales_f32_mem, B_scales_mem);
reorder(D_f32_mem, D_mem).execute(engine_stream, D_f32_mem, D_mem);
// Prepare C buffer. Needed to use a single ukernel in the example with
// `beta = 1.f`.
// Note: to avoid this step, the first ukernel should run `beta = 0`, and it
// will initialize C buffer with intermediate values.
float *C_ptr = reinterpret_cast<float *>(C_mem.get_data_handle());
for (memory::dim i = 0; i < M * N; i++) {
C_ptr[i] = 0;
}
// Create ukernel post-ops (ReLU + Add).
// It reuses `primitive_attr` abstraction.
post_ops brgemm_ops;
brgemm_ops.append_eltwise(
algorithm::eltwise_relu, /* alpha = */ 0.f, /* beta = */ 0.f);
brgemm_ops.append_binary(algorithm::binary_add, binary_add_md);
// Create BRGeMM ukernel objects.
// There are two objects:
// * `brg` is the main one which operates over partitioned K dimension. It
// utilizes `beta = 1.f` to accumulate into the same buffer. It also uses
// `batch_size` to process as much as `n_calls - 1` iterations.
// * `brg_po` is the ukernel that would be called the last in the chain
// since it has attributes attached to the object and those will execute
// after all accumulation over K dimension is done.
// Note: `beta = 1.f` makes a ukernel reusable over K but will require
// zeroing the correspondent piece of accumulation buffer.
brgemm brg, brg_po;
if (batch_size > 0) {
try {
// Construct a basic brgemm object.
brg = brgemm(
M, N, K_k, batch_size, lda, ldb, ldc, a_dt, b_dt, c_dt);
// Instruct the kernel to append the result to C tensor.
brg.set_add_C(true);
// Finalize the initialization.
brg.finalize();
// Generate the executable JIT code for the objects.
brg.generate();
} catch (error &e) {
if (e.status == dnnl_unimplemented)
throw example_allows_unimplemented {
"Kernel is not supported on this platform.\n"};
// on any other error just re-throw
throw;
}
}
try {
// Construct a basic brgemm object.
brg_po = brgemm(M, N, K_k, 1, lda, ldb, ldc, a_dt, b_dt, c_dt);
// Instruct the kernel to append the result to C tensor.
brg_po.set_add_C(true);
// Specify post-ops for the brgemm object.
brg_po.set_post_ops(ldd, d_dt, brgemm_ops);
// Specify quantization scales for B.
if (b_dt == dt::s8 || b_dt == dt::u8) {
brg_po.set_B_scales(/* mask = */ 2);
}
// Finalize the initialization.
brg_po.finalize();
// Generate the executable JIT code for the objects.
brg_po.generate();
} catch (error &e) {
if (e.status == dnnl_unimplemented)
throw example_allows_unimplemented {
"Kernel is not supported on this platform.\n"};
// on any other error just re-throw
throw;
}
// Query a scratchpad size and initialize a scratchpad buffer if the ukernel
// is expecting it. This is a service space needed, has nothing in common
// with accumulation buffer.
size_t scratchpad_size = brg_po.get_scratchpad_size();
std::vector<uint8_t> scratchpad(scratchpad_size);
uint8_t *B_blocked = nullptr;
void *B_base_ptr = B_ptr;
size_t blocked_B_size = 0;
// Query the packing requirement from the kernel. It's enough to query
// packing requirements from a single object as long as only dimension
// settings change between objects.
// Note: example uses the one that always present regardless of dimensions.
const bool need_pack = brg_po.get_B_pack_type() == pack_type::pack32;
// If packing is needed, create a dedicated object for data transformation.
if (need_pack) {
// Packing B tensor routine. The BRGeMM ukernel expects B passed in a
// special VNNI format for low precision data types, e.g., bfloat16_t.
// Note: the routine doesn't provide a `batch_size` argument in the
// constructor as it can be either incorporated into `K` dimension, or
// manually iterated over in a for-loop on the user side.
transform pack_B(/* K = */ K_k * n_calls, /* N = */ N,
/* in_pack_type = */ pack_type::no_trans, /* in_ld = */ N,
/* out_ld = */ ldb, /* in_dt = */ b_dt, /* out_dt = */ b_dt);
// Size of the packed tensor.
blocked_B_size = ldb * K_k * memory::data_type_size(b_dt);
B_blocked = new uint8_t[blocked_B_size * n_calls];
B_base_ptr = B_blocked;
// Pack B routine execution.
// Note: usually should be split to process only that part of B that the
// ukernel will execute.
pack_B.generate();
pack_B.execute(B_ptr, B_blocked);
}
// BRGeMM ukernel execute section.
// Prepare buffers for execution.
std::vector<std::pair<memory::dim, memory::dim>> A_B_offsets(batch_size);
for (memory::dim i = 0; i < batch_size; i++) {
const memory::dim A_offset_i = i * K_k * a_dt_size;
const memory::dim B_offset_i
= need_pack ? i * blocked_B_size : i * N * K_k * b_dt_size;
A_B_offsets[i] = std::make_pair(A_offset_i, B_offset_i);
}
if (brg) {
// Make an object to call HW specialized routines. For example, prepare
// AMX unit.
brg.set_hw_context();
// An execute call. `A_B` is a vector of pointers to A and packed B
// tensors. `acc_ptr` is a pointer to an accumulator buffer.
brg.execute(A_ptr, B_base_ptr, A_B_offsets, C_ptr, scratchpad.data());
}
// Same set of operations for a ukernel with post-ops.
std::vector<std::pair<memory::dim, memory::dim>> A_B_po_offsets;
const memory::dim A_offset_po = batch_size * K_k * a_dt_size;
const memory::dim B_offset_po = need_pack
? batch_size * blocked_B_size
: batch_size * N * K_k * b_dt_size;
A_B_po_offsets.emplace_back(A_offset_po, B_offset_po);
// This object also requires this call.
brg_po.set_hw_context();
// Prepare post-ops arguments and put them in a vector to make sure pointers
// are sitting side by side.
std::vector<const void *> bin_po_ptrs;
bin_po_ptrs.push_back(binary_add_mem.get_data_handle());
// Setting post-ops arguments into an attributes arguments storage.
attr_params params;
params.set_post_ops_args(bin_po_ptrs.data());
params.set_B_scales(B_scales_mem.get_data_handle());
// An execute call. The difference here is an additional D tensor pointer
// to store final output result after finishing accumulation and post-ops
// application.
brg_po.execute(A_ptr, B_base_ptr, A_B_po_offsets, C_ptr,
D_mem.get_data_handle(), scratchpad.data(), params);
// Once all computations are done, need to release HW context.
brgemm::release_hw_context();
// Clean up an extra buffer.
delete B_blocked;
// Used for verification results, need unconditional reorder.
auto user_D_mem = memory(D_f32_md, engine, D_data.data());
reorder(D_mem, user_D_mem).execute(engine_stream, D_mem, user_D_mem);
// Skip the check by default as data filling doesn't help with proper
// verification of the result. Negative result doesn't necessarily mean
// the functionality is broken. This is just a general sanity check.
if (true) return;
// A simplified fast verification that ukernel returned expected results.
// Note: potential off-by-1 or 2 errors may pop up. This could be solved
// with more sparse filling.
bool to_throw = false;
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
D_user_data[m * N + n] = 0;
for (int k = 0; k < K; k++) {
D_user_data[m * N + n]
+= A_user_data[m * K + k] * B_user_data[k * N + n];
}
// B scales ref
D_user_data[m * N + n] *= B_scales_user_data[n];
// Relu post-op ref
D_user_data[m * N + n] = std::max(D_user_data[m * N + n], 0.f);
// Binary post-op ref
D_user_data[m * N + n] += binary_add_user_data[0];
const float diff
= fabsf(D_user_data[m * N + n] - D_data[m * N + n]);
if (diff > 1.19e-7) {
to_throw = true;
if (true) {
printf("Error: [%3d:%3d] Ref:%12g Got:%12g Diff:%12g\n", m,
n, D_user_data[m * N + n], D_data[m * N + n], diff);
}
}
}
}
if (to_throw) { throw status::runtime_error; }
}
int main(int argc, char **argv) {
return handle_example_errors({dnnl::engine::kind::cpu}, brgemm_example);
}