Intel® Integrated Performance Primitives Developer Guide and Reference

ID 790148
Date 11/07/2023
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

Div

Divides each element of the first vector by corresponding element of the second vector.

Syntax

IppStatus ippsDiv_32f_A11 (const Ipp32f* pSrc1, const Ipp32f* pSrc2, Ipp32f* pDst, Ipp32s len);

IppStatus ippsDiv_32f_A21 (const Ipp32f* pSrc1, const Ipp32f* pSrc2, Ipp32f* pDst, Ipp32s len);

IppStatus ippsDiv_32f_A24 (const Ipp32f* pSrc1, const Ipp32f* pSrc2, Ipp32f* pDst, Ipp32s len);

IppStatus ippsDiv_64f_A26 (const Ipp64f* pSrc1, const Ipp64f* pSrc2, Ipp64f* pDst, Ipp32s len);

IppStatus ippsDiv_64f_A50 (const Ipp64f* pSrc1, const Ipp64f* pSrc2, Ipp64f* pDst, Ipp32s len);

IppStatus ippsDiv_64f_A53 (const Ipp64f* pSrc1, const Ipp64f* pSrc2, Ipp64f* pDst, Ipp32s len);

IppStatus ippsDiv_32fc_A11 (const Ipp32fc* pSrc1, const Ipp32fc* pSrc2, Ipp32fc* pDst, Ipp32s len);

IppStatus ippsDiv_32fc_A21 (const Ipp32fc* pSrc1, const Ipp32fc* pSrc2, Ipp32fc* pDst, Ipp32s len);

IppStatus ippsDiv_32fc_A24 (const Ipp32fc* pSrc1, const Ipp32fc* pSrc2, Ipp32fc* pDst, Ipp32s len);

IppStatus ippsDiv_64fc_A26 (const Ipp64fc* pSrc1, const Ipp64fc* pSrc2, Ipp64fc* pDst, Ipp32s len);

IppStatus ippsDiv_64fc_A50 (const Ipp64fc* pSrc1, const Ipp64fc* pSrc2, Ipp64fc* pDst, Ipp32s len);

IppStatus ippsDiv_64fc_A53 (const Ipp64fc* pSrc1, const Ipp64fc* pSrc2, Ipp64fc* pDst, Ipp32s len);

Include Files

ippvm.h

Domain Dependencies

Headers: ippcore.h

Libraries: ippcore.lib

Parameters

pSrc1

Pointer to the first source vector.

pSrc2

Pointer to the second source vector.

pDst

Pointer to the destination vector.

len

Number of elements in the vectors.

Description

This function divides each element of the vector pSrc1 by the corresponding element of the vector pSrc2 and stores the result in the corresponding element of pDst.

For single precision data:

function flavors ippsDiv_32f_A11and ippsDiv_32cf_A11 guarantee 11 correctly rounded bits of significand, or at least 3 exact decimal digits;

function flavors ippsDiv_32f_A21 and ippsDiv_32fc_A21 guarantee 21 correctly rounded bits of significand, or 4 ulps, or about 6 exact decimal digits;

function flavors ippsDiv_32f_A24 and ippsDiv_32fc_A24 guarantee 24 correctly rounded bits of significand, including the implied bit, with the maximum guaranteed error within 1 ulp.

For double precision data:

function flavors ippsDiv_64f_A26 and ippsDiv_64fc_A26 guarantee 26 correctly rounded bits of significand, or 6.7E+7 ulps, or approximately 8 exact decimal digits;

function flavors ippsDiv_64f_A50 and ippsDiv_64fc_A50 guarantee 50 correctly rounded bits of significand, or 4 ulps, or approximately 15 exact decimal digits;

function flavors ippsDiv_64f_A53 and ippsDiv_64fc_A53 guarantee 53 correctly rounded bits of significand, including the implied bit, with the maximum guaranteed error within 1 ulp.

The computation is performed as follows:

pDst[n] = (pSrc1[n]) /(pSrc2[n]), 0 ≤ n < len.

Return Values

ippStsNoErr

Indicates no error.

ippStsNullPtrErr

Indicates an error when pSrc1 or pSrc2 or pDst pointer is NULL.

ippStsSizeErr

Indicates an error when len is less than or equal to 0.

IppStsSingularity

In real functions, indicates a warning that the argument is the singularity point, that is, at least one of the elements of pSrc2 is equal to 0.

Example

The example below shows how to use the function ippsDiv.

IppStatus ippsDiv_32f_A21_sample(void) {
	const Ipp32f x1[4] = {599.088, 735.034, 572.448, 151.640};
	const Ipp32f x2[4] = {385.297, 609.005, 361.403, 225.182};
	Ipp32f y[4];
	IppStatus st = ippsDiv_32f_A21( x1, x2, y, 4 );
	
	printf(" ippsDiv_32f_A21:\n");
	printf(" x1 = %.3f %.3f %.3f %.3f \n", x1[0], x1[1], x1[2], x1[3]);
	printf(" x2 = %.3f %.3f %.3f %.3f \n", x2[0], x2[1], x2[2], x2[3]);
	printf(" y  = %.3f %.3f %.3f %.3f \n", y[0],  y[1],  y[2],  y[3]);
	return st;
}

Output:

 
ippsDiv_32f_A21:
x1 = 599.088 735.034 572.448 151.640
x2 = 385.297 609.005 361.403 225.182
y  = 1.555 1.207 1.584 0.673