Visible to Intel only — GUID: nik1410564935973
Ixiasoft
1. Datasheet
2. Getting Started with the Avalon-MM Design Example
3. Parameter Settings
4. 64- or 128-Bit Avalon-MM Interface to the Endpoint Application Layer
5. Registers
6. Interrupts for Endpoints
7. Error Handling
A. PCI Express Protocol Stack
8. Transceiver PHY IP Reconfiguration
9. Design Implementation
10. Throughput Optimization
11. Additional Features
12. Debugging
B. Lane Initialization and Reversal
C. Document Revision History
2.1. Running Qsys
2.2. Generating the Example Design
2.3. Understanding Simulation Log File Generation
2.4. Running a Gate-Level Simulation
2.5. Simulating the Single DWord Design
2.6. Generating Synthesis Files
2.7. Creating a Quartus® Prime Project
2.8. Compiling the Design
2.9. Programming a Device
2.10. Understanding Channel Placement Guidelines
4.1. 32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave Signals
4.2. Bursting and Non-Bursting Avalon® -MM Module Signals
4.3. 64- or 128-Bit Bursting TX Avalon-MM Slave Signals
4.4. Clock Signals
4.5. Reset
4.6. Interrupts for Endpoints when Multiple MSI/MSI-X Support Is Enabled
4.7. Hard IP Status Signals
4.8. Physical Layer Interface Signals
5.1. Correspondence between Configuration Space Registers and the PCIe Specification
5.2. Type 0 Configuration Space Registers
5.3. Type 1 Configuration Space Registers
5.4. PCI Express Capability Structures
5.5. Intel-Defined VSEC Registers
5.6. CvP Registers
5.7. 64- or 128-Bit Avalon-MM Bridge Register Descriptions
5.8. Programming Model for Avalon-MM Root Port
5.9. Uncorrectable Internal Error Mask Register
5.10. Uncorrectable Internal Error Status Register
5.11. Correctable Internal Error Mask Register
5.12. Correctable Internal Error Status Register
5.7.1.1. Avalon-MM to PCI Express Interrupt Status Registers
5.7.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
5.7.1.3. PCI Express Mailbox Registers
5.7.1.4. Avalon-MM-to-PCI Express Address Translation Table
5.7.1.5. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
5.7.1.6. Avalon-MM Mailbox Registers
5.7.1.7. Control Register Access (CRA) Avalon-MM Slave Port
A.4.1. Avalon‑MM Bridge TLPs
A.4.2. Avalon-MM-to-PCI Express Write Requests
A.4.3. Avalon-MM-to-PCI Express Upstream Read Requests
A.4.4. PCI Express-to-Avalon-MM Read Completions
A.4.5. PCI Express-to-Avalon-MM Downstream Write Requests
A.4.6. PCI Express-to-Avalon-MM Downstream Read Requests
A.4.7. Avalon-MM-to-PCI Express Read Completions
A.4.8. PCI Express-to-Avalon-MM Address Translation for 32-Bit Bridge
A.4.9. Minimizing BAR Sizes and the PCIe Address Space
A.4.10. Avalon® -MM-to-PCI Express Address Translation Algorithm for 32-Bit Addressing
Visible to Intel only — GUID: nik1410564935973
Ixiasoft
coreclkout_hip can drive the Application Layer clock along with the pld_clk input to the IP core. The pld_clk can optionally be sourced by a different clock than coreclkout_hip. The pld_clk minimum frequency cannot be lower than the coreclkout_hip frequency. Based on specific Application Layer constraints, a PLL can be used to derive the desired frequency.
Note: For Gen3, Intel recommends using a common reference clock (0 ppm) because when using separate reference clocks (non 0 ppm), the PCS occasionally must insert SKP symbols, potentially causing the PCIe link to go to recovery. Gen1 or Gen2 modes are not affected by this issue. Systems using the common reference clock (0 ppm) are not affected by this issue. The primary repercussion of this issue is a slight decrease in bandwidth. On Gen3 x8 systems, this bandwidth impact is negligible. If non 0 ppm mode is required, so that separate reference clocks are used, please contact Intel for further information and guidance.