Visible to Intel only — GUID: nik1410564924790
Ixiasoft
1. Datasheet
2. Getting Started with the Avalon-MM Design Example
3. Parameter Settings
4. 64- or 128-Bit Avalon-MM Interface to the Endpoint Application Layer
5. Registers
6. Interrupts for Endpoints
7. Error Handling
A. PCI Express Protocol Stack
8. Transceiver PHY IP Reconfiguration
9. Design Implementation
10. Throughput Optimization
11. Additional Features
12. Debugging
B. Lane Initialization and Reversal
C. Document Revision History
2.1. Running Qsys
2.2. Generating the Example Design
2.3. Understanding Simulation Log File Generation
2.4. Running a Gate-Level Simulation
2.5. Simulating the Single DWord Design
2.6. Generating Synthesis Files
2.7. Creating a Quartus® Prime Project
2.8. Compiling the Design
2.9. Programming a Device
2.10. Understanding Channel Placement Guidelines
4.1. 32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave Signals
4.2. Bursting and Non-Bursting Avalon® -MM Module Signals
4.3. 64- or 128-Bit Bursting TX Avalon-MM Slave Signals
4.4. Clock Signals
4.5. Reset
4.6. Interrupts for Endpoints when Multiple MSI/MSI-X Support Is Enabled
4.7. Hard IP Status Signals
4.8. Physical Layer Interface Signals
5.1. Correspondence between Configuration Space Registers and the PCIe Specification
5.2. Type 0 Configuration Space Registers
5.3. Type 1 Configuration Space Registers
5.4. PCI Express Capability Structures
5.5. Intel-Defined VSEC Registers
5.6. CvP Registers
5.7. 64- or 128-Bit Avalon-MM Bridge Register Descriptions
5.8. Programming Model for Avalon-MM Root Port
5.9. Uncorrectable Internal Error Mask Register
5.10. Uncorrectable Internal Error Status Register
5.11. Correctable Internal Error Mask Register
5.12. Correctable Internal Error Status Register
5.7.1.1. Avalon-MM to PCI Express Interrupt Status Registers
5.7.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
5.7.1.3. PCI Express Mailbox Registers
5.7.1.4. Avalon-MM-to-PCI Express Address Translation Table
5.7.1.5. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
5.7.1.6. Avalon-MM Mailbox Registers
5.7.1.7. Control Register Access (CRA) Avalon-MM Slave Port
A.4.1. Avalon‑MM Bridge TLPs
A.4.2. Avalon-MM-to-PCI Express Write Requests
A.4.3. Avalon-MM-to-PCI Express Upstream Read Requests
A.4.4. PCI Express-to-Avalon-MM Read Completions
A.4.5. PCI Express-to-Avalon-MM Downstream Write Requests
A.4.6. PCI Express-to-Avalon-MM Downstream Read Requests
A.4.7. Avalon-MM-to-PCI Express Read Completions
A.4.8. PCI Express-to-Avalon-MM Address Translation for 32-Bit Bridge
A.4.9. Minimizing BAR Sizes and the PCIe Address Space
A.4.10. Avalon® -MM-to-PCI Express Address Translation Algorithm for 32-Bit Addressing
Visible to Intel only — GUID: nik1410564924790
Ixiasoft
5.8.2. Sending a Read TLP or Receiving a Non-Posted Completion TLP
The TLPs associated with the Non-Posted TX requests are stored in the RP_RX_CPL FIFO buffer and subsequently loaded into RP_RXCPL registers. The Application Layer performs the following sequence to retrieve the TLP.
- Polls the RP_RXCPL_STA TUS.SOP to determine when it is set to 1’b1.
- Then RP_RXCPL_STATUS.SOP = 1’b’1, reads RP_RXCPL_REG0 and RP_RXCPL_REG1 to retrieve dword 0 and dword 1 of the TLP.
- Read the RP_RXCPL_STATUS.EOP.
- If RP_RXCPL_STATUS.EOP = 1’b0, read RP_RXCPL_REG0 and RP_RXCPL_REG1 to retrieve dword 2 and dword 3 of the TLP, then repeat step 3.
- If RP_RXCPL_STATUS.EOP = 1’b1, read RP_RXCPL_REG0 and RP_RXCPL_REG1 to retrieve final dwords of TLP.