Visible to Intel only — GUID: mwh1409960077896
Ixiasoft
1.1. About Synplify Support
1.2. Design Flow
1.3. Hardware Description Language Support
1.4. Intel Device Family Support
1.5. Tool Setup
1.6. Synplify Software Generated Files
1.7. Design Constraints Support
1.8. Simulation and Formal Verification
1.9. Synplify Optimization Strategies
1.10. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
1.11. Incremental Compilation and Block-Based Design
1.12. Synopsys Synplify* Support Revision History
1.10.1.1. Instantiating Intel FPGA IP Cores with IP Catalog Generated Verilog HDL Files
1.10.1.2. Instantiating Intel FPGA IP Cores with IP Catalog Generated VHDL Files
1.10.1.3. Changing Synplify’s Default Behavior for Instantiated Intel FPGA IP Cores
1.10.1.4. Instantiating Intellectual Property with the IP Catalog and Parameter Editor
1.10.1.5. Instantiating Black Box IP Cores with Generated Verilog HDL Files
1.10.1.6. Instantiating Black Box IP Cores with Generated VHDL Files
1.10.1.7. Other Synplify Software Attributes for Creating Black Boxes
1.11.1. Design Flow for Incremental Compilation
1.11.2. Creating a Design with Separate Netlist Files for Incremental Compilation
1.11.3. Using MultiPoint Synthesis with Incremental Compilation
1.11.4. Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate Synplify Projects
1.11.5. Performing Incremental Compilation in the Intel® Quartus® Prime Software
2.1. About Precision RTL Synthesis Support
2.2. Design Flow
2.3. Intel Device Family Support
2.4. Precision Synthesis Generated Files
2.5. Creating and Compiling a Project in the Precision Synthesis Software
2.6. Mapping the Precision Synthesis Design
2.7. Synthesizing the Design and Evaluating the Results
2.8. Exporting Designs to the Intel® Quartus® Prime Software Using NativeLink Integration
2.9. Guidelines for Intel FPGA IP Cores and Architecture-Specific Features
2.10. Incremental Compilation and Block-Based Design
2.11. Mentor Graphics Precision* Synthesis Support Revision History
2.8.1. Running the Intel® Quartus® Prime Software from within the Precision Synthesis Software
2.8.2. Running the Intel® Quartus® Prime Software Manually Using the Precision Synthesis‑Generated Tcl Script
2.8.3. Using the Intel® Quartus® Prime Software to Run the Precision Synthesis Software
2.8.4. Passing Constraints to the Intel® Quartus® Prime Software
2.9.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files
2.9.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files
2.9.3. Instantiating Intellectual Property With the IP Catalog and Parameter Editor
2.9.4. Instantiating Black Box IP Functions With Generated Verilog HDL Files
2.9.5. Instantiating Black Box IP Functions With Generated VHDL Files
2.9.6. Inferring Intel FPGA IP Cores from HDL Code
2.10.1. Creating a Design with Precision RTL Plus Incremental Synthesis
2.10.2. Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations
2.10.3. Creating Black Boxes to Create Netlists
2.10.4. Creating Intel® Quartus® Prime Projects for Multiple Netlist Files
2.10.5. Hierarchy and Design Considerations
Visible to Intel only — GUID: mwh1409960077896
Ixiasoft
2.10.2. Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations
You can manually generate multiple netlist files, which can be VQM or EDIF files, for incremental compilation using black boxes and separate Precision projects or implementations for each design partition. This manual flow is supported in versions of the Precision software that do not include the incremental synthesis feature. You might also use this feature if you perform synthesis in a team-based environment without a top‑level synthesis project that includes all of the lower‑level design blocks.
In the Precision Synthesis software, create a separate implementation, or a separate project, for each lower‑level module and for the top-level design that you want to maintain as a separate netlist file. Implement black box instantiations of lower‑level modules in your top-level implementation or project.
For more information about managing implementations and projects, refer to the Precision RTL Synthesis User’s Manual.
Note: In a standard Intel® Quartus® Prime incremental compilation flow, Precision Synthesis software constraints made on lower‑level modules are not passed to the Intel® Quartus® Prime software. Ensure that appropriate constraints are made in the top-level Precision Synthesis project, or in the Intel® Quartus® Prime project.