Visible to Intel only — GUID: eis1411548313095
Ixiasoft
1. About Floating-Point IP Cores
2. FP_ACC_CUSTOM Intel® FPGA IP or Floating Point Custom Accumulator Intel® FPGA IP Core
3. ALTFP_ADD_SUB IP Core
4. ALTFP_DIV IP Core
5. ALTFP_MULT IP Core
6. ALTFP_SQRT
7. ALTFP_EXP IP Core
8. ALTFP_INV IP Core
9. ALTFP_INV_SQRT IP Core
10. ALTFP_LOG
11. ALTFP_ATAN IP Core
12. ALTFP_SINCOS IP Core
13. ALTFP_ABS IP Core
14. ALTFP_COMPARE IP Core
15. ALTFP_CONVERT IP Core
16. FP_FUNCTIONS Intel® FPGA IP or Floating Point Functions Intel® FPGA IP Core
17. Floating-Point IP Cores User Guide Document Archives
18. Document Revision History for the Floating-Point IP Cores User Guide
1.1. List of Floating-Point IP Cores
1.2. Installing and Licensing Intel® FPGA IP Cores
1.3. Design Flow
1.4. Upgrading IP Cores
1.5. Floating-Point IP Cores General Features
1.6. IEEE-754 Standard for Floating-Point Arithmetic
1.7. Non-IEEE-754 Standard Format
1.8. Floating-Points IP Cores Output Latency
1.9. Floating-Point IP Cores Design Example Files
1.10. VHDL Component Declaration
1.11. VHDL LIBRARY-USE Declaration
2.1. FP_ACC_CUSTOM Intel® FPGA IP or Floating Point Custom Accumulator Intel® FPGA IP Features
2.2. FP_ACC_CUSTOM Intel® FPGA IP or Floating Point Custom Accumulator Intel® FPGA IP Output Latency
2.3. FP_ACC_CUSTOM Intel® FPGA IP Resource Utilization and Performance
2.4. FP_ACC_CUSTOM Intel® FPGA IP or Floating Point Custom Accumulator Intel® FPGA IP Signals
2.5. FP_ACC_CUSTOM Intel® FPGA IP or Floating Point Custom Accumulator Intel® FPGA IP Parameters
15.1. ALTFP_CONVERT Features
15.2. ALTFP_CONVERT Conversion Operations
15.3. ALTFP_CONVERT Output Latency
15.4. ALTFP_CONVERT Resource Utilization and Performance
15.5. ALTFP_CONVERT Design Example: Convert Double-Precision Floating-Point Format Numbers
15.6. ALTFP_CONVERT Signals
15.7. ALTFP_CONVERT Parameters
16.1. FP_FUNCTIONS Intel® FPGA IP or Floating Point Functions Intel® FPGA IP Features
16.2. FP_FUNCTIONS Intel® FPGA IP or Floating Point Functions Intel® FPGA IP Output Latency
16.3. FP_FUNCTIONS Intel® FPGA IP or Floating Point Functions Intel® FPGA IP Target Frequency
16.4. FP_FUNCTIONS Intel® FPGA IP or Floating Point Functions Intel® FPGA IP Combined Target
16.5. FP_FUNCTIONS Intel® FPGA IP Resource Utilization and Performance
16.6. FP_FUNCTIONS Intel® FPGA IP Signals
16.7. FP_FUNCTIONS Intel® FPGA IP Parameters
Visible to Intel only — GUID: eis1411548313095
Ixiasoft
4.6. ALTFP_DIV Signals
Figure 19. ALTFP_DIV Signals
Port Name | Required | Description |
---|---|---|
aclr | No | Asynchronous clear input for the floating-point divider. The source is asynchronously reset when the aclr signal is asserted high. |
clock | Yes | Clock input to the IP core. |
clk_en | No | Clock enable to the floating-point divider. This port enables division. This signal is active high. When this signal is low, no division takes place and the outputs remain the same. |
dataa[] | Yes | Numerator data input. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits and mantissa bits. |
datab[] | Yes | Denominator data input.The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits and mantissa bits. |
Port Name | Required | Description |
---|---|---|
result[] | Yes | Divider output port. The division result (after rounding). As with the input values, the MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits, and mantissa bits. |
overflow | No | Overflow port for the divider. Asserted when the result of the division (after rounding) exceeds or reaches infinity. Infinity is defined as a number in which the exponent exceeds 2WIDTH_EXP–1. |
underflow | No | Underflow port for the divider. Asserted when the result of the division (after rounding) is zero even though neither of the inputs to the divider is zero, or when the result is a denormalized number. |
zero | No | Zero port for the divider. Asserted when the value of result[] is zero. |
division_by_zero | No | Division-by-zero output port for the divider. Asserted when the value of datab[] is a zero. |
nan | No | NaN port. Asserted when an invalid division occurs, such as infinity dividing infinity or zero dividing zero. A NaN value appears as output at the result[] port. Any division of a NaN value causes the nan output port to be asserted. |