Visible to Intel only — GUID: sss1440054284658
Ixiasoft
1. Intel Agilex® 7 Configuration User Guide
2. Intel Agilex® 7 Configuration Details
3. Intel Agilex® 7 Configuration Schemes
4. Including the Reset Release Intel® FPGA IP in Your Design
5. Remote System Update (RSU)
6. Intel Agilex® 7 Configuration Features
7. Intel Agilex® 7 Debugging Guide
8. Intel Agilex® 7 Configuration User Guide Archives
9. Document Revision History for the Intel Agilex® 7 Configuration User Guide
2.1. Intel Agilex® 7 Configuration Timing Diagram
2.2. Configuration Flow Diagram
2.3. Device Response to Configuration and Reset Events
2.4. Additional Clock Requirements for HPS and Transceivers
2.5. Intel Agilex® 7 Configuration Pins
2.6. Configuration Clocks
2.7. Intel Agilex® 7 Configuration Time Estimation
2.8. Generating Compressed .sof File
3.1.1. Avalon® -ST Configuration Scheme Hardware Components and File Types
3.1.2. Enabling Avalon-ST Device Configuration
3.1.3. The AVST_READY Signal
3.1.4. RBF Configuration File Format
3.1.5. Avalon-ST Single-Device Configuration
3.1.6. Debugging Guidelines for the Avalon® -ST Configuration Scheme
3.1.7. IP for Use with the Avalon® -ST Configuration Scheme: Parallel Flash Loader II Intel® FPGA IP Core
3.1.7.4.1. PFL II IP Recommended Design Constraints to FPGA Avalon-ST Pins
3.1.7.4.2. PFL II IP Recommended Design Constraints for Using QSPI Flash
3.1.7.4.3. PFL II IP Recommended Design Constraints for using CFI Flash
3.1.7.4.4. PFL II IP Recommended Constraints for Other Input Pins
3.1.7.4.5. PFL II IP Recommended Constraints for Other Output Pins
3.2.1. AS Configuration Scheme Hardware Components and File Types
3.2.2. AS Single-Device Configuration
3.2.3. AS Using Multiple Serial Flash Devices
3.2.4. AS Configuration Timing Parameters
3.2.5. Skew Tolerance Guidelines
3.2.6. Programming Serial Flash Devices
3.2.7. Serial Flash Memory Layout
3.2.8. AS_CLK
3.2.9. Active Serial Configuration Software Settings
3.2.10. Intel® Quartus® Prime Programming Steps
3.2.11. Debugging Guidelines for the AS Configuration Scheme
5.1. Remote System Update Functional Description
5.2. Guidelines for Performing Remote System Update Functions for Non-HPS
5.3. Commands and Responses
5.4. Quad SPI Flash Layout
5.5. Generating Remote System Update Image Files Using the Programming File Generator
5.6. Remote System Update from FPGA Core Example
5.7. Debugging Guidelines for RSU Configuration
5.6.1. Prerequisites
5.6.2. Creating Initial Flash Image Containing Bitstreams for Factory Image and One Application Image
5.6.3. Programming Flash Memory with the Initial Remote System Update Image
5.6.4. Reconfiguring the Device with an Application or Factory Image
5.6.5. Adding an Application Image
5.6.6. Removing an Application Image
7.1. Configuration Debugging Checklist
7.2. Intel Agilex® 7 Configuration Architecture Overview
7.3. Understanding Configuration Status Using quartus_pgm command
7.4. Configuration File Format Differences
7.5. Understanding SEUs
7.6. Reading the Unique 64-Bit CHIP ID
7.7. E-Tile Transceivers May Fail To Configure
7.8. Understanding and Troubleshooting Configuration Pin Behavior
7.9. Configuration Debugger Tool
Visible to Intel only — GUID: sss1440054284658
Ixiasoft
2.5. Intel Agilex® 7 Configuration Pins
The Intel Agilex® 7 device uses SDM_IO pins for device configuration. Control of SDM I/O pins passes from internal FPGA circuitry, to the Boot ROM, and finally to the value your application logic specifies.
- After power-on, SDM I/O pins 0, 8, and 16 have weak pull-downs. All other SDM I/O pins have weak pull-ups. (These initial voltage levels ensure correct operation during initialization. For example, for Avalon® -ST configuration SDM_IO8 is the Avalon® -ST ready signal which should not be asserted until the device reaches the FPGA Configuration state.)
- The Boot ROM samples MSEL to determine the configuration scheme you specified and drives pins required for that configuration scheme. SDM I/O pins not required for your configuration scheme remain weakly pulled up.
- In approximately 10 ms the SDM I/O pins take on the state that your design specifies.
- After device cleaning, the SDM reads pin information from firmware and restores the pin states that your design specifies. If you reconfigure the device, the SDM uses the updated pin information when initializing the device.