Visible to Intel only — GUID: uua1540884363366
Ixiasoft
2.1.1. Directory Structure
2.1.2. Generating the Design
2.1.3. Simulating the E-Tile Hard IP for Ethernet Intel FPGA IP Design Example Testbench
2.1.4. Compiling the Compilation-Only Project
2.1.5. Compiling and Configuring the Design Example in Hardware
2.1.6. Testing the E-Tile Hard IP for Ethernet Intel FPGA IP Hardware Design Example
2.2.1.1. Non-PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.2. PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.3. 10GE/25GE PCS Only, OTN, or FlexE with Optional RS-FEC Simulation Design Example
2.2.1.4. 10GE/25GE Custom PCS with Optional RS-FEC Simulation Design Example
2.3.1. Simulation Design Examples
2.3.2. Hardware Design Examples
2.3.3. 100GE MAC+PCS with Optional RS-FEC Design Example Interface Signals
2.3.4. 100GE PCS with Optional RS-FEC Design Example Interface Signals
2.3.5. Multiple 25G Synchronous Ethernet Channels
2.3.6. 100GE MAC+PCS with Optional RS-FEC Design Example Registers
2.3.7. 100GE PCS with Optional RS-FEC Design Example Registers
2.3.1.1. Non-PTP E-Tile Hard IP for Ethernet Intel FPGA IP 100GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.3.1.2. E-Tile Hard IP for Ethernet Intel FPGA IP 100GE MAC+PCS with Optional RS-FEC and PTP Simulation Design Example
2.3.1.3. E-Tile Hard IP for Ethernet Intel FPGA IP 100GE PCS Only with Optional RS-FEC Simulation Design Example
2.3.1.4. E-Tile Hard IP for Ethernet Intel FPGA IP 100GE OTN with Optional RS-FEC Simulation Design Example
2.3.1.5. E-Tile Hard IP for Ethernet Intel FPGA IP 100GE FlexE with Optional RS-FEC Simulation Design Example
2.3.2.1. 100GE MAC+PCS with Optional RS-FEC and PMA Adaptation Flow Hardware Design Example Components
2.3.2.2. 100GE MAC+PCS with Optional RS-FEC and PTP Hardware Design Example
2.3.2.3. 100GE PCS with Optional RS-FEC Hardware Design Example Components
2.3.2.4. Ethernet Adaptation Flow for 100G (CAUI-2) PAM4 <---> 100G (CAUI-4) NRZ Dynamic Reconfiguration Design Example
3.1.1. Hardware and Software Requirements
3.1.2. Generating the Design
3.1.3. Directory Structure
3.1.4. Simulating the Design Example Testbench
3.1.5. Compiling the Compilation-Only Project
3.1.6. Compiling and Configuring the Design Example in Hardware
3.1.7. Testing the E-tile CPRI PHY Intel® FPGA IP Hardware Design Example
4.1. Quick Start Guide
4.2. 10G/25G Ethernet Dynamic Reconfiguration Design Examples
4.3. CPRI Dynamic Reconfiguration Design Examples
4.4. 25G Ethernet to CPRI Dynamic Reconfiguration Design Example
4.5. 100G Ethernet Dynamic Reconfiguration Design Example
4.6. Document Revision History for the E-Tile Dynamic Reconfiguration Design Example
4.5.1. Functional Description
4.5.2. Testing the 100G Ethernet Dynamic Reconfiguration Hardware Design Example
4.5.3. Simulation Design Examples
4.5.4. 100GE DR Hardware Design Examples
4.5.5. 100G Ethernet Dynamic Reconfiguration Design Example Interface Signals
4.5.6. 100G Ethernet Dynamic Reconfiguration Examples Registers
4.5.7. Steps to Enable FEC
4.5.8. Steps to Disable FEC
Visible to Intel only — GUID: uua1540884363366
Ixiasoft
2.2.1.3. 10GE/25GE PCS Only, OTN, or FlexE with Optional RS-FEC Simulation Design Example
The simulation block diagram below is generated using the following settings in the IP parameter editor:
- Under the IP tab:
- 1 to 4 10GE/25GE with optional RSFEC or 100GE or 1 to 4 channel 10GE/25GE with optional RSFEC and PTP as the core variant.
- 10GE/25GE Channel(s) as Active channel(s) at startup if you choose 100GE or 1 to 4 channel 10GE/25GE with optional RSFEC and PTP as the core variant.
- Enable RSFEC to use the RS-FEC feature.
- Under the 10GE/25GE tab:
- 10G or 25G as the Ethernet rate.
- Select PCS Only, OTN, or FlexE as Ethernet IP layers.
Note: RS-FEC is not supported in 10GE variant.
Figure 8. Simulation Block Diagram for E-Tile Hard IP for Ethernet Intel FPGA IP 10GE/25GE PCS Only, OTN, or FlexE with Optional RS-FEC Design Examples
The testbench sends traffic through the IP core, exercising the transmit side and receive side of the IP core.
The successful test run displays output confirming the following behavior:
- Wait for PLL to lock.
- Wait for RX transceiver reset to complete.
- Wait for RX alignment.
- Send three sets of packet.
- Receive and verify the packets.
- Displaying Testbench complete.
The following sample output illustrates a successful simulation test run for a 10GE, PCS Only IP core variation.
# Ref clock is 322.265625 MHz # waiting for EHIP Ready.... # EHIP READY is 1 at time 425955000 # Waiting for RX Block Lock # EHIP RX Block Lock is high at time 429395673 # Waiting for RX alignment # RX deskew locked # RX lane aligmnent locked # TX enabled # *** Sending packets *** # Start frame detected, byteslip 0, time 431948219 # ** RX checker has received packets correctly! # ** RX checker is reset. # *** Second attempt of sending packets *** # Start frame detected, byteslip 0, time 437204752 # ** RX checker has received packets correctly! # ** RX checker is reset. # *** Third attempt of sending packets *** # Start frame detected, byteslip 0, time 442467492 # ** RX checker has received packets correctly! # ** PASSED # ** # ***************************************** # ** Note: $finish : ./basic_avl_tb_top.sv(246) # Time: 445329189 ps Iteration: 0 Instance: /basic_avl_tb_top # 1 # Break in Module basic_avl_tb_top at ./basic_avl_tb_top.sv line 246