Visible to Intel only — GUID: nik1410564770239
Ixiasoft
1. Datasheet
2. Getting Started with the Avalon-MM Cyclone V Hard IP for PCI Express
3. Parameter Settings
4. Interfaces and Signal Descriptions
5. Registers
6. Reset and Clocks
7. Interrupts for Endpoints
8. Error Handling
A. PCI Express Protocol Stack
9. Design Implementation
10. Additional Features
11. Transceiver PHY IP Reconfiguration
12. Debugging
B. Frequently Asked Questions for PCI Express
C. Lane Initialization and Reversal
D. Document Revision History
2.1. Running Platform Designer
2.2. Generating the Example Design
2.3. Running a Gate-Level Simulation
2.4. Simulating the Single DWord Design
2.5. Understanding Channel Placement Guidelines
2.6. Generating Synthesis Files
2.7. Compiling the Design in the Quartus® Prime Software
2.8. Programming a Device
5.1. Correspondence between Configuration Space Registers and the PCIe Specification
5.2. Type 0 Configuration Space Registers
5.3. Type 1 Configuration Space Registers
5.4. PCI Express Capability Structures
5.5. Intel-Defined VSEC Registers
5.6. CvP Registers
5.7. 64- or 128-Bit Avalon-MM Bridge Register Descriptions
5.8. Programming Model for Avalon-MM Root Port
5.9. Uncorrectable Internal Error Mask Register
5.10. Uncorrectable Internal Error Status Register
5.11. Correctable Internal Error Mask Register
5.12. Correctable Internal Error Status Register
5.7.1.1. Avalon-MM to PCI Express Interrupt Status Registers
5.7.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
5.7.1.3. PCI Express Mailbox Registers
5.7.1.4. Avalon-MM-to-PCI Express Address Translation Table
5.7.1.5. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
5.7.1.6. Avalon-MM Mailbox Registers
5.7.1.7. Control Register Access (CRA) Avalon-MM Slave Port
A.4.1. Avalon‑MM Bridge TLPs
A.4.2. Avalon-MM-to-PCI Express Write Requests
A.4.3. Avalon-MM-to-PCI Express Upstream Read Requests
A.4.4. PCI Express-to-Avalon-MM Read Completions
A.4.5. PCI Express-to-Avalon-MM Downstream Write Requests
A.4.6. PCI Express-to-Avalon-MM Downstream Read Requests
A.4.7. Avalon-MM-to-PCI Express Read Completions
A.4.8. PCI Express-to-Avalon-MM Address Translation for 32-Bit Bridge
A.4.9. Minimizing BAR Sizes and the PCIe Address Space
A.4.10. Avalon® -MM-to-PCI Express Address Translation Algorithm for 32-Bit Addressing
Visible to Intel only — GUID: nik1410564770239
Ixiasoft
1.4. Device Family Support
The following terms define device support levels for Intel® FPGA IP cores:
- Advance support—the IP core is available for simulation and compilation for this device family. Timing models include initial engineering estimates of delays based on early post-layout information. The timing models are subject to change as silicon testing improves the correlation between the actual silicon and the timing models. You can use this IP core for system architecture and resource utilization studies, simulation, pinout, system latency assessments, basic timing assessments (pipeline budgeting), and I/O transfer strategy (data-path width, burst depth, I/O standards tradeoffs).
- Preliminary support—the IP core is verified with preliminary timing models for this device family. The IP core meets all functional requirements, but might still be undergoing timing analysis for the device family. It can be used in production designs with caution.
- Final support—the IP core is verified with final timing models for this device family. The IP core meets all functional and timing requirements for the device family and can be used in production designs.
Device Family |
Support Level |
---|---|
Cyclone V |
Final. |
Other device families |
Refer to the Intel's PCI Express IP Solutions web page for other device families: |