Visible to Intel only — GUID: bhc1411020541732
Ixiasoft
1. About the Video and Image Processing Suite
2. Avalon Streaming Video
3. Clocked Video
4. VIP Run-Time Control
5. Getting Started
6. VIP Connectivity Interfacing
7. Clocked Video Interface IPs
8. 2D FIR II IP Core
9. Mixer II IP Core
10. Clipper II IP Core
11. Color Plane Sequencer II IP Core
12. Color Space Converter II IP Core
13. Chroma Resampler II IP Core
14. Control Synchronizer IP Core
15. Deinterlacer II IP Core
16. Frame Buffer II IP Core
17. Gamma Corrector II IP Core
18. Configurable Guard Bands IP Core
19. Interlacer II IP Core
20. Scaler II IP Core
21. Switch II IP Core
22. Test Pattern Generator II IP Core
23. Trace System IP Core
24. Warp Lite Intel FPGA IP
25. Avalon-ST Video Stream Cleaner IP Core
26. Avalon-ST Video Monitor IP Core
27. VIP IP Core Software Control
28. Security Considerations
29. Video and Image Processing Suite User Guide Archives
30. Document Revision History for the Video and Image Processing Suite User Guide
A. Avalon-ST Video Verification IP Suite
7.1. Supported Features for Clocked Video Output II IP
7.2. Control Port
7.3. Clocked Video Input IP Format Detection
7.4. Clocked Video Output IP Video Modes
7.5. Clocked Video Output II Latency Mode
7.6. Generator Lock
7.7. Underflow and Overflow
7.8. Timing Constraints
7.9. Handling Ancillary Packets
7.10. Modules for Clocked Video Input II IP Core
7.11. Clocked Video Input II Signals, Parameters, and Registers
7.12. Clocked Video Output II Signals, Parameters, and Registers
15.1. Deinterlacing Algorithm Options
15.2. Deinterlacing Algorithms
15.3. Run-time Control
15.4. Pass-Through Mode for Progressive Frames
15.5. Cadence Detection (Motion Adaptive Deinterlacing Only)
15.6. Avalon-MM Interface to Memory
15.7. Motion Adaptive Mode Bandwidth Requirements
15.8. Avalon-ST Video Support
15.9. 4K Video Passthrough Support
15.10. Behavior When Unexpected Fields are Received
15.11. Handling of Avalon-ST Video Control Packets
15.12. Deinterlacer II Parameter Settings
15.13. Deinterlacing Control Registers
A.3.1. c_av_st_video_control
A.3.2. c_av_st_video_data
A.3.3. c_av_st_video_file_io
A.3.4. c_av_st_video_item
A.3.5. c_av_st_video_source_sink_base
A.3.6. c_av_st_video_sink_bfm_’SINK
A.3.7. c_av_st_video_source_bfm_’SOURCE
A.3.8. c_av_st_video_user_packet
A.3.9. c_pixel
A.3.10. av_mm_transaction
A.3.11. av_mm_master_bfm_`MASTER_NAME
A.3.12. av_mm_slave_bfm_`SLAVE_NAME
A.3.13. av_mm_control_register
A.3.14. av_mm_control_base
Visible to Intel only — GUID: bhc1411020541732
Ixiasoft
A.3.8. c_av_st_video_user_packet
The declaration for the c_av_st_video_user_packet class:
class c_av_st_video_user_packet#(parameters BITS_PER_CHANNEL=8, CHANNELS_PER_PIXEL=3) extends c_av_st_video_item;
Method Call | Description |
---|---|
function new(); | Constructor. |
function void copy (c_av_st_video_user_packet c); | Copies object c into this object. |
function bit compare (c_av_st_video_user_packet r); | Compares this instance to object r. Returns 1 if identical, 0 if otherwise. |
function void set_max_length(int l); | Minimum and maximum lengths are used for constrained random testing only. |
function void set_min_length(int l); | Minimum and maximum lengths are used for constrained random testing only. |
function int get_length(); | — |
function bit[3:0] get_identifier(); | The identifier is the Avalon-ST video packet identifier. 0x0 indicates video, 0xf indicates a control packet, and the user packets take random values from 0x4 to 0xe. |
function bit[3:0] set_identifier(int i); | — |
function bit [BITS_PER_CHANNEL*CHANNELS_PER_PIXEL-1:0] pop_data(); | Returns the next beat of user data. |
function bit [BITS_PER_CHANNEL*CHANNELS_PER_PIXEL-1:0] query_data(int i);; | Returns the next beat of user data without removing it from the object. |
function void push_data(bit [BITS_PER_CHANNEL*CHANNELS_PER_PIXEL-1:0] d); | — |
Member | Description |
---|---|
rand bit[BITS_PER_CHANNEL*CHANNELS_PER_PIXEL-1:0]data[$] | User data is stored as a queue of words. |
rand bit[3:0] identifier; | constraint c2 {identifier inside {[1:9]};} |
int max_length = 10; | constraint c1 { data.size() inside {[min_length:max_length]}; data.size() % pixels_in_parallel == 0; } |
int min_length = 5; | constraint c1 { data.size() inside {[min_length:max_length]}; data.size() % pixels_in_parallel == 0; } |