Visible to Intel only — GUID: bhc1410500741334
Ixiasoft
Overview of the Design Security Feature
Hardware and Software Requirements
Steps for Implementing a Secure Configuration Flow
Steps to Enable Tamper-Protection Bit Programming
Supported Configuration Schemes
Security Mode Verification
Serial Flash Loader Support with Encryption Enabled
Serial Flash Loader Support with Encryption Enabled for Single FPGA Device Chain
JTAG Secure Mode for 28-nm and 20-nm FPGAs
Document Revision History for AN 556: Using the Design Security Features in Intel® FPGAs
Generating Single-Device .ekp File and Encrypting Configuration File using Intel® Quartus® Prime Software
Generating Single-Device .ekp File and Encrypting Configuration File using Command-Line Interface in Intel® Quartus® Prime Software
Generating Multi-Device .ekp File and Encrypting Configuration File using Intel® Quartus® Prime Software
Programming Volatile or Non-Volatile Key using Intel® FPGA Ethernet Cable and Intel® Quartus® Prime Software
Programming Single-Device Volatile or Non-Volatile Key using Intel® Quartus® Prime Software
Programming Single-Device Volatile or Non-Volatile Key using the Command-Line Interface in Intel® Quartus® Prime Software
Programming Multi-Device Volatile or Non-Volatile Key using Intel® Quartus® Prime Software
Programming Multi-Device Volatile or Non-Volatile Key using the Command-Line Interface in Intel® Quartus® Prime Software
Programming Key using JTAG Technologies
Visible to Intel only — GUID: bhc1410500741334
Ixiasoft
Hardware and Software Requirements
When using the design security feature, a volatile or non-volatile key is stored in the FPGA. The key must be programmed before the FPGA is configured with an encrypted configuration file.