Embedded Peripherals IP User Guide

ID 683130
Date 12/18/2024
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Multi-Channel Shared Memory FIFO Core 3. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 4. Avalon® -ST Serial Peripheral Interface Core 5. SPI Core 6. SPI Agent/JTAG to Avalon® Host Bridge Cores 7. Intel eSPI Agent Core 8. eSPI to LPC Bridge Core 9. Ethernet MDIO Core 10. Intel FPGA 16550 Compatible UART Core 11. UART Core 12. JTAG UART Core 13. Intel FPGA Avalon® Mailbox Core 14. Intel FPGA Avalon® Mutex Core 15. Intel FPGA Avalon® I2C (Host) Core 16. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 17. Intel FPGA Avalon® Compact Flash Core 18. EPCS/EPCQA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller Core 20. Intel FPGA Serial Flash Controller II Core 21. Intel FPGA Generic QUAD SPI Controller Core 22. Intel FPGA Generic QUAD SPI Controller II Core 23. Interval Timer Core 24. Intel FPGA Avalon FIFO Memory Core 25. On-Chip Memory (RAM and ROM) Intel FPGA IP 26. On-Chip Memory II (RAM or ROM) Intel FPGA IP 27. Optrex 16207 LCD Controller Core 28. PIO Core 29. PLL Cores 30. DMA Controller Core 31. Modular Scatter-Gather DMA Core 32. Scatter-Gather DMA Controller Core 33. SDRAM Controller Core 34. Tri-State SDRAM Core 35. Video Sync Generator and Pixel Converter Cores 36. Intel FPGA Interrupt Latency Counter Core 37. Performance Counter Unit Core 38. Vectored Interrupt Controller Core 39. Avalon® -ST Data Pattern Generator and Checker Cores 40. Avalon® -ST Test Pattern Generator and Checker Cores 41. System ID Peripheral Core 42. Avalon® Packets to Transactions Converter Core 43. Avalon® -ST Multiplexer and Demultiplexer Cores 44. Avalon® -ST Bytes to Packets and Packets to Bytes Converter Cores 45. Avalon® -ST Delay Core 46. Avalon® -ST Round Robin Scheduler Core 47. Avalon® -ST Splitter Core 48. Avalon® -MM DDR Memory Half Rate Bridge Core 49. Intel FPGA GMII to RGMII Converter Core 50. HPS GMII to RGMII Adapter Intel® FPGA IP 51. Intel FPGA MII to RMII Converter Core 52. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 53. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 54. Intel FPGA MSI to GIC Generator Core 55. Cache Coherency Translator Intel® FPGA IP 56. Altera ACE5-Lite Cache Coherency Translator Intel® FPGA IP 57. Lightweight UART Core

38.6.1.2.3. VIC Connections

When you have added the VIC to your system, it appears in Platform Designer as shown below.

Note: If you have enabled daisy chaining, Platform Designer adds an Avalon® -ST sink, called interrupt_controller_in, to the VIC.
Figure 139. VIC Interfaces

After adding a VIC to the Platform Designer system, you must parameterize the VIC and the EIC interface at the system level. Immediately after you add the VIC, several error messages appear. Resolve these error messages by executing the following actions in any order:

  • Connect the VIC’s interrupt_controller_out Avalon® -ST source to the interrupt_controller_in Avalon® -ST sink on either the Nios II processor or the next VIC in a daisy-chained configuration.
  • Connect the Nios® II processor's data_master Avalon® -MM ports to the csr_access Avalon® -MM agent port.
  • Assign an interrupt number for each interrupt-based component in the system, as shown below. This step connects each component to an interrupt port on the VIC.
Note: If your system contains more than one EIC connected to a single processor, you must ensure that each component is connected to an interrupt port on only one EIC.
Figure 140. Assigning Interrupt Numbers

When you use the HAL VIC driver, the driver makes a default assignment from register sets to interrupts. The default assignment makes some assumptions about interrupt priorities, based on how devices are connected to the VIC.

Note: To make effective use of the VIC interrupt setting defaults, assign your highest priority interrupts to low interrupt port numbers on the VIC closest to the processor.