Embedded Peripherals IP User Guide

ID 683130
Date 12/18/2024
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Multi-Channel Shared Memory FIFO Core 3. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 4. Avalon® -ST Serial Peripheral Interface Core 5. SPI Core 6. SPI Agent/JTAG to Avalon® Host Bridge Cores 7. Intel eSPI Agent Core 8. eSPI to LPC Bridge Core 9. Ethernet MDIO Core 10. Intel FPGA 16550 Compatible UART Core 11. UART Core 12. JTAG UART Core 13. Intel FPGA Avalon® Mailbox Core 14. Intel FPGA Avalon® Mutex Core 15. Intel FPGA Avalon® I2C (Host) Core 16. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 17. Intel FPGA Avalon® Compact Flash Core 18. EPCS/EPCQA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller Core 20. Intel FPGA Serial Flash Controller II Core 21. Intel FPGA Generic QUAD SPI Controller Core 22. Intel FPGA Generic QUAD SPI Controller II Core 23. Interval Timer Core 24. Intel FPGA Avalon FIFO Memory Core 25. On-Chip Memory (RAM and ROM) Intel FPGA IP 26. On-Chip Memory II (RAM or ROM) Intel FPGA IP 27. Optrex 16207 LCD Controller Core 28. PIO Core 29. PLL Cores 30. DMA Controller Core 31. Modular Scatter-Gather DMA Core 32. Scatter-Gather DMA Controller Core 33. SDRAM Controller Core 34. Tri-State SDRAM Core 35. Video Sync Generator and Pixel Converter Cores 36. Intel FPGA Interrupt Latency Counter Core 37. Performance Counter Unit Core 38. Vectored Interrupt Controller Core 39. Avalon® -ST Data Pattern Generator and Checker Cores 40. Avalon® -ST Test Pattern Generator and Checker Cores 41. System ID Peripheral Core 42. Avalon® Packets to Transactions Converter Core 43. Avalon® -ST Multiplexer and Demultiplexer Cores 44. Avalon® -ST Bytes to Packets and Packets to Bytes Converter Cores 45. Avalon® -ST Delay Core 46. Avalon® -ST Round Robin Scheduler Core 47. Avalon® -ST Splitter Core 48. Avalon® -MM DDR Memory Half Rate Bridge Core 49. Intel FPGA GMII to RGMII Converter Core 50. HPS GMII to RGMII Adapter Intel® FPGA IP 51. Intel FPGA MII to RMII Converter Core 52. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 53. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 54. Intel FPGA MSI to GIC Generator Core 55. Cache Coherency Translator Intel® FPGA IP 56. Altera ACE5-Lite Cache Coherency Translator Intel® FPGA IP 57. Lightweight UART Core

36.6.1. Interrupt Latency Counter Architecture

Interrupt Latency Calculator Architecture

The interrupt latency calculator operates on a single clock domain which is determined by which clock it is receiving at the CLK interface. The interrupt detector circuit is made up of a positive-edge triggered flop which delays the IRQ signal to be XORed with the original signal. The pulse resulted from the previous operation is then fed to an enable register where it will switch its state from logic ‘low’ to ‘high’. This will trigger the counter to start its operation. Prior to this, the reset signal is assumed to be triggered through the firmware. Once the Interrupt service routine has been completed, the IRQ signal drops to logic low. This causes another pulse to be generated to stop the counter. Data from the counter is then duplicated into the latency data register to be read out.

When the interrupt detector is configured to react to a pulse signal, the incoming pulse is fed directly to enable the register to turn on the counter. In this mode, to halt the counter’s operation, you have to write a Boolean ‘1’ to the counter stop bit. Only the first IRQ pulse can trigger the counter to start counting and that subsequent pulse will not cause the counter to reset until a Boolean ‘1’ is written into the counter stop register. In ‘pulse’ mode, the latency measured by the IP is one clock cycle more than actual latency.