Embedded Peripherals IP User Guide

ID 683130
Date 12/18/2024
Public
Document Table of Contents
1. Introduction 2. Avalon® -ST Multi-Channel Shared Memory FIFO Core 3. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 4. Avalon® -ST Serial Peripheral Interface Core 5. SPI Core 6. SPI Agent/JTAG to Avalon® Host Bridge Cores 7. Intel eSPI Agent Core 8. eSPI to LPC Bridge Core 9. Ethernet MDIO Core 10. Intel FPGA 16550 Compatible UART Core 11. UART Core 12. JTAG UART Core 13. Intel FPGA Avalon® Mailbox Core 14. Intel FPGA Avalon® Mutex Core 15. Intel FPGA Avalon® I2C (Host) Core 16. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 17. Intel FPGA Avalon® Compact Flash Core 18. EPCS/EPCQA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller Core 20. Intel FPGA Serial Flash Controller II Core 21. Intel FPGA Generic QUAD SPI Controller Core 22. Intel FPGA Generic QUAD SPI Controller II Core 23. Interval Timer Core 24. Intel FPGA Avalon FIFO Memory Core 25. On-Chip Memory (RAM and ROM) Intel FPGA IP 26. On-Chip Memory II (RAM or ROM) Intel FPGA IP 27. Optrex 16207 LCD Controller Core 28. PIO Core 29. PLL Cores 30. DMA Controller Core 31. Modular Scatter-Gather DMA Core 32. Scatter-Gather DMA Controller Core 33. SDRAM Controller Core 34. Tri-State SDRAM Core 35. Video Sync Generator and Pixel Converter Cores 36. Intel FPGA Interrupt Latency Counter Core 37. Performance Counter Unit Core 38. Vectored Interrupt Controller Core 39. Avalon® -ST Data Pattern Generator and Checker Cores 40. Avalon® -ST Test Pattern Generator and Checker Cores 41. System ID Peripheral Core 42. Avalon® Packets to Transactions Converter Core 43. Avalon® -ST Multiplexer and Demultiplexer Cores 44. Avalon® -ST Bytes to Packets and Packets to Bytes Converter Cores 45. Avalon® -ST Delay Core 46. Avalon® -ST Round Robin Scheduler Core 47. Avalon® -ST Splitter Core 48. Avalon® -MM DDR Memory Half Rate Bridge Core 49. Intel FPGA GMII to RGMII Converter Core 50. HPS GMII to RGMII Adapter Intel® FPGA IP 51. Intel FPGA MII to RMII Converter Core 52. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 53. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 54. Intel FPGA MSI to GIC Generator Core 55. Cache Coherency Translator Intel® FPGA IP 56. Altera ACE5-Lite Cache Coherency Translator Intel® FPGA IP 57. Lightweight UART Core

10.3.6. Driver Examples

Below is a simple test program to verify that the Intel FPGA 16550 UART driver support is functional.

The test reads, validates, and writes a modified baud rate, data bits, stop bits, parity bits to the UART before attempting to write a character stream to it from UART0 to UART1 and vice verse (ping pong test). This also tests the FIFO and FIFO-less mode to ensure the IP is functioning for FIFO.

Prerequisites needed before running test:
  • An instance of UART named "a_16550_uart_0" and another instance UART named "a_16550_uart_1".
  • Both UARTs need to be connected in loopback in Quartus® Prime software.
Additional coverage:
  • Non-blocking UART support
  • UART HAL driver
  • HAL open/write support

The test will print "ALL TESTS PASS" from the UART to indicate success.

Verifying Intel FPGA 16550 UART Driver Support functionality

#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/termios.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "system.h"
#include "altera_16550_uart.h"
#include "altera_16550_uart_regs.h"
#include <wchar.h>

#define ERROR -1
#define SUCCESS 0
#define MOCK_UART
#define BUFSIZE 512
wchar_t TXMessage[BUFSIZE] = L"Hello World";
wchar_t RXMessage[BUFSIZE] = L"";

int UARTDefaultConfig(UartConfig *Config)
{
  Config->stop_bit     = STOPB_1;
  Config->parity_bit   = NO_PARITY;
  Config->data_bit     = CS_8;
  Config->baudrate     = BR115200;
  Config->fifo_mode    = 0;
  Config->hwfc         = 0;
  Config->rx_fifo_level= RXFULL;
  Config->tx_fifo_level= TXEMPTY;
  return 0;
}

int UARTBaudRateTest()
{
  UartConfig *UART0_Config = malloc(1*sizeof(UartConfig));
  UartConfig *UART1_Config = malloc(1*sizeof(UartConfig));

  int i=0, j=0, direction=0, Match=0;
  const int nBaud = 5;
  int BaudRateCoverage[]= {BR9600, BR19200, BR38400, BR57600, BR115200};
  altera_16550_uart_state* uart_0;
  altera_16550_uart_state* uart_1;

  printf("============ UART Baud Rate Test Starts Here ===============\n");
  uart_0 = altera_16550_uart_open ("/dev/a_16550_uart_0");
  uart_1 = altera_16550_uart_open ("/dev/a_16550_uart_1");

  for (direction=0; direction<2; direction++)
  {
	  for (i=0; i<nBaud; i++)
		  {
  			UARTDefaultConfig(UART0_Config);
			UARTDefaultConfig(UART1_Config);
		    UART0_Config->baudrate=BaudRateCoverage[i];
		    UART1_Config->baudrate=BaudRateCoverage[i];
			printf("Testing Baud Rate: %d\n", UART0_Config->baudrate);
		    if(ERROR == alt_16550_uart_config (uart_0, UART0_Config)) return ERROR;
		    if(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) return ERROR;

	        switch(direction)
			{
			 case 0:
			    printf("Ping Pong Baud Rate Test: UART#0 to UART#1\n");
				for(j=0; j<wcslen(TXMessage); j++)
				{
					altera_16550_uart_write(uart_0, &TXMessage[j], 1, 0);
					usleep(1000);
					if(ERROR== altera_16550_uart_read(uart_1,  RXMessage, 1, 0)) return ERROR;
					if(TXMessage[j]==RXMessage[0]) Match=1; else return ERROR;
					printf("Sent:'%c', Received:'%c', Match:%d\n", TXMessage[j], RXMessage[0], Match);
				}
				break;
			 case 1:
			    printf("Ping Pong Baud Rate Test: UART#1 to UART#0\n");
				for(j=0; j<wcslen(TXMessage); j++)
				{
					altera_16550_uart_write(uart_1, &TXMessage[j], 1, 0);
					usleep(1000);
					if(ERROR== altera_16550_uart_read(uart_0,  RXMessage, 1, 0)) return ERROR;
					if(TXMessage[j]==RXMessage[0]) Match=1; else return ERROR;
					printf("Sent:'%c', Received:'%c', Match:%d\n", TXMessage[j], RXMessage[0], Match);
				}
				break;
			 default:
			 	break;
			}
			usleep(1000);
		  }
  }
  free(UART0_Config);
  free(UART1_Config);
  return SUCCESS;
}

int UARTLineControlTest()
{
  UartConfig *UART0_Config = malloc(1*sizeof(UartConfig));
  UartConfig *UART1_Config = malloc(1*sizeof(UartConfig));

  int x=0, y=0, z=0, Match=0;
  const int nDataBit = 2, nParityBit=3, nStopBit=2;
  int DataBitCoverage[]= { /*CS_5, CS_6,*/ CS_7, CS_8};
  int ParityBitCoverage[]= {ODD_PARITY, EVEN_PARITY, NO_PARITY};
  int StopBitCoverage[]= {STOPB_1, STOPB_2};
  altera_16550_uart_state* uart_0;
  altera_16550_uart_state* uart_1;

  printf("================================ UART Line Control Test Starts Here =======================================\n");
  uart_0 = altera_16550_uart_open ("/dev/a_16550_uart_0");
  uart_1 = altera_16550_uart_open ("/dev/a_16550_uart_1");

  for(x=0; x<nStopBit; x++)
  {
	  for (y=0; y<nParityBit; y++)
	  {
		  for (z=0; z<nDataBit; z++)
			  {
	  			UARTDefaultConfig(UART0_Config);
				UARTDefaultConfig(UART1_Config);
			    UART0_Config->stop_bit=StopBitCoverage[x];
			    UART1_Config->stop_bit=StopBitCoverage[x];
			    UART0_Config->parity_bit=ParityBitCoverage[y];
			    UART1_Config->parity_bit=ParityBitCoverage[y];
			    UART0_Config->data_bit=DataBitCoverage[z];
			    UART1_Config->data_bit=DataBitCoverage[z];

				printf("Testing : Stop Bit=%d, Data Bit=%d, Parity Bit=%d\n", UART0_Config->stop_bit, UART0_Config->data_bit, UART0_Config->parity_bit);
			    if(ERROR == alt_16550_uart_config (uart_0, UART0_Config)) return ERROR;
			    if(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) return ERROR;
				altera_16550_uart_write(uart_0, &TXMessage[0], 1, 0);
				usleep(1000);
				if(ERROR== altera_16550_uart_read(uart_1,  RXMessage, 1, 0)) return ERROR;
				if(TXMessage[0]==RXMessage[0]) Match=1; else
					{
					printf("Sent:'%c', Received:'%c', Match:%d\n", TXMessage[0], RXMessage[0], Match);
					return ERROR;
					}
				printf("Sent:'%c', Received:'%c', Match:%d\n", TXMessage[0], RXMessage[0], Match);
			  }
	  }
  }
  free(UART0_Config);
  free(UART1_Config);
  return SUCCESS;
}

int UARTFIFOModeTest()
{

  UartConfig *UART0_Config = malloc(1*sizeof(UartConfig));
  UartConfig *UART1_Config = malloc(1*sizeof(UartConfig));

  int i=0, direction=0, CharCounter=0, Match=0;
  const int nBaud = 2;
  int BaudRateCoverage[]= {BR115200, /*BR19200, BR38400, BR57600,*/ BR9600};
  altera_16550_uart_state* uart_0;
  altera_16550_uart_state* uart_1;

  printf("================================ UART FIFO Mode Test Starts Here =======================================\n");
  uart_0 = altera_16550_uart_open ("/dev/a_16550_uart_0");
  uart_1 = altera_16550_uart_open ("/dev/a_16550_uart_1");

  for (direction=0; direction<2; direction++)
  {
	  for (i=0; i<nBaud; i++)
		  {
  			UARTDefaultConfig(UART0_Config);
			UARTDefaultConfig(UART1_Config);
		    UART0_Config->baudrate=BaudRateCoverage[i];
		    UART1_Config->baudrate=BaudRateCoverage[i];
			UART0_Config->fifo_mode = 1;
			UART1_Config->fifo_mode = 1;
  			UART0_Config->hwfc = 0;
  			UART1_Config->hwfc = 0;
		    if(ERROR == alt_16550_uart_config (uart_0, UART0_Config)) return ERROR;
		    if(ERROR == alt_16550_uart_config (uart_1, UART1_Config)) return ERROR;
			printf("Testing Baud Rate: %d\n", UART0_Config->baudrate);

	        switch(direction)
			{
			 case 0:
			    printf("Ping Pong FIFO Test: UART#0 to UART#1\n");
				CharCounter=altera_16550_uart_write(uart_0, &TXMessage, wcslen(TXMessage), 0);
				//usleep(50000);
				if(ERROR== altera_16550_uart_read(uart_1,  RXMessage, wcslen(TXMessage), 0)) return ERROR;
				if(strcmp(TXMessage, RXMessage)==0) Match=1; else Match=0;
				printf("Sent:'%s' CharCount:%d, Received:'%s' CharCount:%d, Match:%d\n", TXMessage, CharCounter, RXMessage, wcslen(RXMessage), Match);
				if(Match==0) return ERROR;
				break;
			 case 1:
			    printf("Ping Pong FIFO Test: UART#1 to UART#0\n");
				CharCounter=altera_16550_uart_write(uart_1, &TXMessage, wcslen(TXMessage), 0);
				//usleep(50000);
				if(ERROR== altera_16550_uart_read(uart_0,  RXMessage, wcslen(TXMessage), 0)) return ERROR;
				if(strcmp(TXMessage, RXMessage)==0) Match=1; else Match=0;
				printf("Sent:'%s' CharCount:%d, Received:'%s' CharCount:%d, Match:%d\n", TXMessage, CharCounter, RXMessage, wcslen(RXMessage), Match);
				if(Match==0) return ERROR;
				break;
			 default:
			 	break;
			}
			//usleep(100000);
		  }
  }
  free(UART0_Config);
  free(UART1_Config);
  return SUCCESS;
}

int main()
{
  int result=0;

  result = UARTBaudRateTest();
  if(result==ERROR)
  {
   printf("UARTBaudRateTest FAILED\n");
   return ERROR;
  }

  result = UARTLineControlTest();
  if(result==ERROR)
  {
   printf("UARTLineControlTest FAILED\n");
   return ERROR;
  }

  result = UARTFIFOModeTest();
  if(result==ERROR)
  {
    printf("UARTFIFOModeTest FAILED\n");
	return ERROR;
  }
  printf("\n\nALL TESTS PASS\n\n");
  return 0;
}