Visible to Intel only — GUID: iga1443130094813
Ixiasoft
1. Introduction
2. Avalon® -ST Multi-Channel Shared Memory FIFO Core
3. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores
4. Avalon® -ST Serial Peripheral Interface Core
5. SPI Core
6. SPI Agent/JTAG to Avalon® Host Bridge Cores
7. Intel eSPI Agent Core
8. eSPI to LPC Bridge Core
9. Ethernet MDIO Core
10. Intel FPGA 16550 Compatible UART Core
11. UART Core
12. JTAG UART Core
13. Intel FPGA Avalon® Mailbox Core
14. Intel FPGA Avalon® Mutex Core
15. Intel FPGA Avalon® I2C (Host) Core
16. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core
17. Intel FPGA Avalon® Compact Flash Core
18. EPCS/EPCQA Serial Flash Controller Core
19. Intel FPGA Serial Flash Controller Core
20. Intel FPGA Serial Flash Controller II Core
21. Intel FPGA Generic QUAD SPI Controller Core
22. Intel FPGA Generic QUAD SPI Controller II Core
23. Interval Timer Core
24. Intel FPGA Avalon FIFO Memory Core
25. On-Chip Memory (RAM and ROM) Intel FPGA IP
26. On-Chip Memory II (RAM or ROM) Intel FPGA IP
27. Optrex 16207 LCD Controller Core
28. PIO Core
29. PLL Cores
30. DMA Controller Core
31. Modular Scatter-Gather DMA Core
32. Scatter-Gather DMA Controller Core
33. SDRAM Controller Core
34. Tri-State SDRAM Core
35. Video Sync Generator and Pixel Converter Cores
36. Intel FPGA Interrupt Latency Counter Core
37. Performance Counter Unit Core
38. Vectored Interrupt Controller Core
39. Avalon® -ST Data Pattern Generator and Checker Cores
40. Avalon® -ST Test Pattern Generator and Checker Cores
41. System ID Peripheral Core
42. Avalon® Packets to Transactions Converter Core
43. Avalon® -ST Multiplexer and Demultiplexer Cores
44. Avalon® -ST Bytes to Packets and Packets to Bytes Converter Cores
45. Avalon® -ST Delay Core
46. Avalon® -ST Round Robin Scheduler Core
47. Avalon® -ST Splitter Core
48. Avalon® -MM DDR Memory Half Rate Bridge Core
49. Intel FPGA GMII to RGMII Converter Core
50. Intel FPGA MII to RMII Converter Core
51. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP
52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core
53. Intel FPGA MSI to GIC Generator Core
54. Cache Coherency Translator Intel® FPGA IP
55. Lightweight UART Core
10.2.1. Unsupported Features
10.2.2. Interface
10.2.3. General Architecture
10.2.4. 16550 UART General Programming Flow Chart
10.2.5. Configuration Parameters
10.2.6. DMA Support
10.2.7. FPGA Resource Usage
10.2.8. Timing and Fmax
10.2.9. Avalon® -MM Agent
10.2.10. Over-run/Under-run Conditions
10.2.11. Hardware Auto Flow-Control
10.2.12. Clock and Baud Rate Selection
15.5.2.1. Transfer Command FIFO (TFR_CMD)
15.5.2.2. Receive Data FIFO (RX_DATA)
15.5.2.3. Control Register (CTRL)
15.5.2.4. Interrupt Status Enable Register (ISER)
15.5.2.5. Interrupt Status Register (ISR)
15.5.2.6. Status Register (STATUS)
15.5.2.7. TFR CMD FIFO Level (TFR CMD FIFO LVL)
15.5.2.8. RX Data FIFO Level (RX Data FIFO LVL)
15.5.2.9. SCL Low Count (SCL LOW)
15.5.2.10. SCL High Count (SCL HIGH)
15.5.2.11. SDA Hold Count (SDA HOLD)
24.6.1. altera_avalon_fifo_init()
24.6.2. altera_avalon_fifo_read_status()
24.6.3. altera_avalon_fifo_read_ienable()
24.6.4. altera_avalon_fifo_read_almostfull()
24.6.5. altera_avalon_fifo_read_almostempty()
24.6.6. altera_avalon_fifo_read_event()
24.6.7. altera_avalon_fifo_read_level()
24.6.8. altera_avalon_fifo_clear_event()
24.6.9. altera_avalon_fifo_write_ienable()
24.6.10. altera_avalon_fifo_write_almostfull()
24.6.11. altera_avalon_fifo_write_almostempty()
24.6.12. altera_avalon_write_fifo()
24.6.13. altera_avalon_write_other_info()
24.6.14. altera_avalon_fifo_read_fifo()
24.6.15. altera_avalon_fifo_read_other_info()
25.1. Core Overview
25.2. Component-Level Design for On-Chip Memory
25.3. Platform Designer System-Level Design for On-Chip Memory
25.4. Simulation for On-Chip Memory
25.5. Intel® Quartus® Prime Project-Level Design for On-Chip Memory
25.6. Board-Level Design for On-Chip Memory
25.7. Example Design with On-Chip Memory
25.8. On-Chip Memory (RAM and ROM) Intel FPGA IP Revision History
26.1. Core Overview
26.2. Embedded Memory Architecture and Features
26.3. Component-Level Configurations
26.4. Interface Signals
26.5. Control and Status Registers
26.6. Software Programming Model
26.7. Platform Designer System-Level Design for On-Chip Memory II
26.8. Simulation for On-Chip Memory II
26.9. Intel® Quartus® Prime Project-Level Design for On-Chip Memory II
26.10. Board-Level Design for On-Chip Memory II
26.11. Example Design with On-Chip Memory II
26.12. On-Chip Memory II (RAM and ROM) Intel FPGA IP Revision History
31.1. Core Overview
31.2. Feature Description
31.3. mSGDMA Interfaces and Parameters
31.4. mSGDMA Descriptors
31.5. Register Map of mSGDMA
31.6. Programming Model
31.7. Modular Scatter-Gather DMA Prefetcher Core
31.8. Driver Implementation
31.9. Example Code Using mSGDMA Core
31.10. Modular Scatter-Gather DMA Core Revision History
31.5.1. Status Register
31.5.2. Control Register
31.5.3. Write Fill Level Register
31.5.4. Read Fill Level Register
31.5.5. Response Fill Level Register
31.5.6. Write Sequence Number Register
31.5.7. Read Sequence Number Register
31.5.8. Component Configuration 1 Register
31.5.9. Component Configuration 2 Register
31.5.10. Component Type Register
31.5.11. Component Version Register
31.8.1. alt_msgdma_standard_descriptor_async_transfer
31.8.2. alt_msgdma_extended_descriptor_async_transfer
31.8.3. alt_msgdma_descriptor_async_transfer
31.8.4. alt_msgdma_standard_descriptor_sync_transfer
31.8.5. alt_msgdma_extended_descriptor_sync_transfer
31.8.6. alt_msgdma_descriptor_sync_transfer
31.8.7. alt_msgdma_construct_standard_st_to_mm_descriptor
31.8.8. alt_msgdma_construct_standard_mm_to_st_descriptor
31.8.9. alt_msgdma_construct_standard_mm_to_mm_descriptor
31.8.10. alt_msgdma_construct_standard_descriptor
31.8.11. alt_msgdma_construct_extended_st_to_mm_descriptor
31.8.12. alt_msgdma_construct_extended_mm_to_st_descriptor
31.8.13. alt_msgdma_construct_extended_mm_to_mm_descriptor
31.8.14. alt_msgdma_construct_extended_descriptor
31.8.15. alt_msgdma_register_callback
31.8.16. alt_msgdma_open
31.8.17. alt_msgdma_write_standard_descriptor
31.8.18. alt_msgdma_write_extended_descriptor
31.8.19. alt_msgdma_init
31.8.20. alt_msgdma_irq
32.7.1. Data Structure
32.7.2. SG-DMA API
32.7.3. alt_avalon_sgdma_do_async_transfer()
32.7.4. alt_avalon_sgdma_do_sync_transfer()
32.7.5. alt_avalon_sgdma_construct_mem_to_mem_desc()
32.7.6. alt_avalon_sgdma_construct_stream_to_mem_desc()
32.7.7. alt_avalon_sgdma_construct_mem_to_stream_desc()
32.7.8. alt_avalon_sgdma_enable_desc_poll()
32.7.9. alt_avalon_sgdma_disable_desc_poll()
32.7.10. alt_avalon_sgdma_check_descriptor_status()
32.7.11. alt_avalon_sgdma_register_callback()
32.7.12. alt_avalon_sgdma_start()
32.7.13. alt_avalon_sgdma_stop()
32.7.14. alt_avalon_sgdma_open()
38.5.6.1. altera_vic_driver.enable_preemption
38.5.6.2. altera_vic_driver.enable_preemption_into_new_register_set
38.5.6.3. altera_vic_driver.enable_preemption_rs_<n>
38.5.6.4. altera_vic_driver.linker_section
38.5.6.5. altera_vic_driver.<name>.vec_size
38.5.6.6. altera_vic_driver.<name>.irq<n>_rrs
38.5.6.7. altera_vic_driver.<name>.irq<n>_ril
38.5.6.8. altera_vic_driver.<name>.irq<n>_rnmi
38.5.6.9. Default Settings for RRS and RIL
38.5.6.10. VIC BSP Design Rules for Intel FPGA HAL Implementation
38.5.6.11. RTOS Considerations
40.1. Core Overview
40.2. Resource Utilization and Performance
40.3. Test Pattern Generator
40.4. Test Pattern Checker
40.5. Hardware Simulation Considerations
40.6. Software Programming Model
40.7. Test Pattern Generator API
40.8. Test Pattern Checker API
40.9. Avalon® -ST Test Pattern Generator and Checker Cores Revision History
40.7.1. data_source_reset()
40.7.2. data_source_init()
40.7.3. data_source_get_id()
40.7.4. data_source_get_supports_packets()
40.7.5. data_source_get_num_channels()
40.7.6. data_source_get_symbols_per_cycle()
40.7.7. data_source_set_enable()
40.7.8. data_source_get_enable()
40.7.9. data_source_set_throttle()
40.7.10. data_source_get_throttle()
40.7.11. data_source_is_busy()
40.7.12. data_source_fill_level()
40.7.13. data_source_send_data()
40.8.1. data_sink_reset()
40.8.2. data_sink_init()
40.8.3. data_sink_get_id()
40.8.4. data_sink_get_supports_packets()
40.8.5. data_sink_get_num_channels()
40.8.6. data_sink_get_symbols_per_cycle()
40.8.7. data_sink_set enable()
40.8.8. data_sink_get_enable()
40.8.9. data_sink_set_throttle()
40.8.10. data_sink_get_throttle()
40.8.11. data_sink_get_packet_count()
40.8.12. data_sink_get_symbol_count()
40.8.13. data_sink_get_error_count()
40.8.14. data_sink_get_exception()
40.8.15. data_sink_exception_is_exception()
40.8.16. data_sink_exception_has_data_error()
40.8.17. data_sink_exception_has_missing_sop()
40.8.18. data_sink_exception_has_missing_eop()
40.8.19. data_sink_exception_signalled_error()
40.8.20. data_sink_exception_channel()
Visible to Intel only — GUID: iga1443130094813
Ixiasoft
31.7.1.6.1. Setting up Descriptor and mSGDMA Configuration Flow
The following is the recommended software flow to setup the descriptor and configuring the mSGDMA.
- Build the descriptor list and terminate the list with a non-hardware owned descriptor (Owned By Hardware = 0).
- Configure mSGDMA by accessing dispatcher core control register (for example: to configure Stop on Error, Stop on Early Termination, etc…)
- Configure mSGDMA by accessing the Prefetcher core configuration register (for example: to write the address of the first descriptor in the first list to the next descriptor pointer register and set the Run bit to 1 to initiate transfers).
- While the core is processing the first list, your software may build a second list of descriptors.
- An IRQ can be generated each time a descriptor transfer is completed (depends whether transfer complete IRQ mask is set for that particular descriptor). If you only need an IRQ to be generated when mSGDMA finishes processing the first list, you only need to set transfer complete IRQ mask for the last descriptor in the first list.
- When the last descriptor in the first linked list has been processed, an IRQ will be generated if the descriptor polling is disabled. Following this, your software needs to update the next descriptor pointer register with the address of the first descriptor in the second linked list before setting the run bit back to 1 to resume transfers. If descriptor polling is enabled, software does not need to update the next descriptor pointer register (for second descriptor linked list onwards) and set the run bit back to 1. These 2 steps are automatically done by hardware. The address of the new list is indicated by next descriptor pointer fields of the previous list. The Prefetcher core polls for the Owned by Hardware bit to be 1 in order to resume transfers. Software only needs to flip the Owned by Hardware bit of the first descriptor in second linked list to 1 to indicate to the Prefetcher core that the second linked list is ready.
- If there are new descriptors to add, always add them to the list which the core is not processing (indicated by Owned By Hardware = 0). For example, if the core is processing the first list, add new descriptors to the second list and so forth. This method ensures that the descriptors are not updated when the core is processing them. Your software can read the descriptor in the memory to know the status of the transfer (for example; to know the actual bytes being transferred, any error in the transfer).