Visible to Intel only — GUID: GUID-1612CC2D-8FE0-402D-AACE-2B7A3164C3A1
3D Spheres Test
Birthday Spacing Test
Bitstream Test
Rank of 31x31 Binary Matrices Test
Rank of 32x32 Binary Matrices Test
Rank of 6x8 Binary Matrices Test
Count-the-1's Test (Stream of Bits)
Count-the-1's Test (Stream of Specific Bytes)
Craps Test
Parking Lot Test
Self-Avoiding Random Walk Test
Template Test
Uniform (VSL_RNG_METHOD_UNIFORM_STD/VSL_RNG_METHOD_UNIFORM_STD_ACCURATE)
Gaussian (VSL_RNG_METHOD_GAUSSIAN_BOXMULLER)
Gaussian (VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2)
Gaussian (VSL_RNG_METHOD_GAUSSIAN_ICDF)
GaussianMV (VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER)
GaussianMV (VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2)
GaussianMV (VSL_RNG_METHOD_GAUSSIANMV_ICDF)
Exponential (VSL_RNG_METHOD_EXPONENTIAL_ICDF/VSL_RNG_METHOD_EXPONENTIAL_ICDF_ACCURATE)
Laplace (VSL_RNG_METHOD_LAPLACE_ICDF)
Weibull (VSL_RNG_METHOD_WEIBULL_ICDF/ VSL_RNG_METHOD_WEIBULL_ICDF_ACCURATE)
Cauchy (VSL_RNG_METHOD_CAUCHY_ICDF)
Rayleigh (VSL_RNG_METHOD_RAYLEIGH_ICDF/ VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURATE)
Lognormal (VSL_RNG_METHOD_LOGNORMAL_ BOXMULLER2/VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2_ACCURATE)
Lognormal (VSL_RNG_METHOD_LOGNORMAL_ICDF/VSL_RNG_METHOD_LOGNORMAL_ICDF_ACCURATE)
Gumbel (VSL_RNG_METHOD_GUMBEL_ICDF)
Gamma (VSL_RNG_METHOD_GAMMA_GNORM/ VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE)
Beta (VSL_RNG_METHOD_BETA_CJA/ VSL_RNG_METHOD_BETA_CJA_ACCURATE)
ChiSquare (VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA)
Uniform (VSL_RNG_METHOD_UNIFORM_STD)
UniformBits (VSL_RNG_METHOD_UNIFORMBITS_STD)
UniformBits32 (VSL_RNG_METHOD_UNIFORMBITS32_STD)
UniformBits64 (VSL_RNG_METHOD_UNIFORMBITS64_STD)
Bernoulli (VSL_RNG_METHOD_BERNOULLI_ICDF)
Geometric (VSL_RNG_METHOD_GEOMETRIC_ICDF)
Binomial (VSL_RNG_METHOD_BINOMIAL_BTPE)
Hypergeometric (VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE)
Poisson (VSL_RNG_METHOD_POISSON_PTPE)
Poisson (VSL_RNG_METHOD_POISSON_POISNORM)
PoissonV (VSL_RNG_METHOD_POISSONV_POISNORM)
NegBinomial (VSL_RNG_METHOD_NEGBINOMIAL_NBAR)
Multinomial (VSL_RNG_METHOD_MULTINOMIAL_MULTPOISSON)
Visible to Intel only — GUID: GUID-1612CC2D-8FE0-402D-AACE-2B7A3164C3A1
Multinomial (VSL_RNG_METHOD_MULTINOMIAL_MULTPOISSON)
Multinomial distribution with parameters m, k, and a probability vector p. Random numbers of the multinomial distribution are generated by Poisson Approximation method (see [Charles93] for details).
- In the first stage, k independent Poisson values (X1...Xk) are generated by the POISSNORM method.
- Let m* denote sum of the generated k Poisson variates:
- If m*=m, the first-stage sample has the required distribution.
- If m*>m, the sample is discarded and the first stage is repeated.
- If m*<m, m*-m observations are generated by the Direct method (see [Charles93] for details):
- m*-m uniformly distributed independent random variates Ui are generated on the interval (0, 1).
- The component Xi is incremented by 1 if
See Intel® oneAPI Math Kernel Library Vector Statistics Random Number Generator Performance Data for test results summary and performance graphs.
Parent topic: Discrete Distribution Random Number Generators