Visible to Intel only — GUID: GUID-CE2D7CC1-B066-4883-B3BA-75D0C195A3BA
SGESVD Example Program in C
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
SGESVD Example.
==============
Program computes the singular value decomposition of a general
rectangular matrix A:
8.79 9.93 9.83 5.45 3.16
6.11 6.91 5.04 -0.27 7.98
-9.15 -7.93 4.86 4.85 3.01
9.57 1.64 8.83 0.74 5.80
-3.49 4.02 9.80 10.00 4.27
9.84 0.15 -8.99 -6.02 -5.31
Description.
============
The routine computes the singular value decomposition (SVD) of a real
m-by-n matrix A, optionally computing the left and/or right singular
vectors. The SVD is written as
A = U*SIGMA*VT
where SIGMA is an m-by-n matrix which is zero except for its min(m,n)
diagonal elements, U is an m-by-m orthogonal matrix and VT (V transposed)
is an n-by-n orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and are
returned in descending order. The first min(m, n) columns of U and V are
the left and right singular vectors of A.
Note that the routine returns VT, not V.
Example Program Results.
========================
SGESVD Example Program Results
Singular values
27.47 22.64 8.56 5.99 2.01
Left singular vectors (stored columnwise)
-0.59 0.26 0.36 0.31 0.23
-0.40 0.24 -0.22 -0.75 -0.36
-0.03 -0.60 -0.45 0.23 -0.31
-0.43 0.24 -0.69 0.33 0.16
-0.47 -0.35 0.39 0.16 -0.52
0.29 0.58 -0.02 0.38 -0.65
Right singular vectors (stored rowwise)
-0.25 -0.40 -0.69 -0.37 -0.41
0.81 0.36 -0.25 -0.37 -0.10
-0.26 0.70 -0.22 0.39 -0.49
0.40 -0.45 0.25 0.43 -0.62
-0.22 0.14 0.59 -0.63 -0.44
*/
#include <stdlib.h>
#include <stdio.h>
/* SGESVD prototype */
extern void sgesvd( char* jobu, char* jobvt, int* m, int* n, float* a,
int* lda, float* s, float* u, int* ldu, float* vt, int* ldvt,
float* work, int* lwork, int* info );
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, int m, int n, float* a, int lda );
/* Parameters */
#define M 6
#define N 5
#define LDA M
#define LDU M
#define LDVT N
/* Main program */
int main() {
/* Locals */
int m = M, n = N, lda = LDA, ldu = LDU, ldvt = LDVT, info, lwork;
float wkopt;
float* work;
/* Local arrays */
float s[N], u[LDU*M], vt[LDVT*N];
float a[LDA*N] = {
8.79f, 6.11f, -9.15f, 9.57f, -3.49f, 9.84f,
9.93f, 6.91f, -7.93f, 1.64f, 4.02f, 0.15f,
9.83f, 5.04f, 4.86f, 8.83f, 9.80f, -8.99f,
5.45f, -0.27f, 4.85f, 0.74f, 10.00f, -6.02f,
3.16f, 7.98f, 3.01f, 5.80f, 4.27f, -5.31f
};
/* Executable statements */
printf( " SGESVD Example Program Results\n" );
/* Query and allocate the optimal workspace */
lwork = -1;
sgesvd( "All", "All", &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, &wkopt, &lwork,
&info );
lwork = (int)wkopt;
work = (float*)malloc( lwork*sizeof(float) );
/* Compute SVD */
sgesvd( "All", "All", &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork,
&info );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm computing SVD failed to converge.\n" );
exit( 1 );
}
/* Print singular values */
print_matrix( "Singular values", 1, n, s, 1 );
/* Print left singular vectors */
print_matrix( "Left singular vectors (stored columnwise)", m, n, u, ldu );
/* Print right singular vectors */
print_matrix( "Right singular vectors (stored rowwise)", n, n, vt, ldvt );
/* Free workspace */
free( (void*)work );
exit( 0 );
} /* End of SGESVD Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, int m, int n, float* a, int lda ) {
int i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}
Parent topic: SGESVD Example