Visible to Intel only — GUID: GUID-6D66D613-07FD-4091-95C0-807DFB3FF303
LAPACKE_zgelsd Example Program in C for Column Major Data Layout
/*******************************************************************************
* Copyright (C) 2009-2015 Intel Corporation. All Rights Reserved.
* The information and material ("Material") provided below is owned by Intel
* Corporation or its suppliers or licensors, and title to such Material remains
* with Intel Corporation or its suppliers or licensors. The Material contains
* proprietary information of Intel or its suppliers and licensors. The Material
* is protected by worldwide copyright laws and treaty provisions. No part of
* the Material may be copied, reproduced, published, uploaded, posted,
* transmitted, or distributed in any way without Intel's prior express written
* permission. No license under any patent, copyright or other intellectual
* property rights in the Material is granted to or conferred upon you, either
* expressly, by implication, inducement, estoppel or otherwise. Any license
* under such intellectual property rights must be express and approved by Intel
* in writing.
*
********************************************************************************
*/
/*
LAPACKE_zgelsd Example.
=======================
Program computes the minimum norm-solution to a complex linear least squares
problem using the singular value decomposition of A,
where A is the coefficient matrix:
( 4.55, -0.32) ( -4.36, -4.76) ( 3.99, -6.84) ( 8.03, -6.47)
( 8.87, -3.11) ( 0.02, 8.43) ( 5.43, -9.30) ( 2.28, 8.94)
( -0.74, 1.16) ( 3.80, -6.12) ( -7.24, 0.72) ( 2.21, 9.52)
and B is the right-hand side matrix:
( -8.25, 7.98) ( 2.91, -8.81)
( -5.04, 3.33) ( 6.19, 0.19)
( 7.98, -4.38) ( -5.96, 7.18)
Description.
============
The routine computes the minimum-norm solution to a complex linear least
squares problem: minimize ||b - A*x|| using the singular value
decomposition (SVD) of A. A is an m-by-n matrix which may be rank-deficient.
Several right hand side vectors b and solution vectors x can be handled
in a single call; they are stored as the columns of the m-by-nrhs right
hand side matrix B and the n-by-nrhs solution matrix X.
The effective rank of A is determined by treating as zero those singular
values which are less than rcond times the largest singular value.
Example Program Results.
========================
LAPACKE_zgelsd (column-major, high-level) Example Program Results
Minimum norm solution
( -0.08, 0.09) ( 0.04, 0.16)
( -0.17, 0.10) ( 0.17, -0.47)
( -0.92, -0.01) ( 0.71, -0.41)
( -0.47, -0.26) ( 0.69, 0.02)
Effective rank = 3
Singular values
20.01 18.21 7.88
*/
#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h"
/* Auxiliary routines prototypes */
extern void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex16* a, MKL_INT lda );
extern void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda );
/* Parameters */
#define M 3
#define N 4
#define NRHS 2
#define LDA M
#define LDB N
/* Main program */
int main() {
/* Locals */
MKL_INT m = M, n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info, rank;
/* Negative rcond means using default (machine precision) value */
double rcond = -1.0;
/* Local arrays */
double s[M];
MKL_Complex16 a[LDA*N] = {
{ 4.55, -0.32}, { 8.87, -3.11}, {-0.74, 1.16},
{-4.36, -4.76}, { 0.02, 8.43}, { 3.80, -6.12},
{ 3.99, -6.84}, { 5.43, -9.30}, {-7.24, 0.72},
{ 8.03, -6.47}, { 2.28, 8.94}, { 2.21, 9.52}
};
MKL_Complex16 b[LDB*NRHS] = {
{-8.25, 7.98}, {-5.04, 3.33}, { 7.98, -4.38}, { 0.00, 0.00},
{ 2.91, -8.81}, { 6.19, 0.19}, {-5.96, 7.18}, { 0.00, 0.00}
};
/* Executable statements */
printf( "LAPACKE_zgelsd (column-major, high-level) Example Program Results\n" );
/* Solve the equations A*X = B */
info = LAPACKE_zgelsd( LAPACK_COL_MAJOR, m, n, nrhs, a, lda, b, ldb,
s, rcond, &rank );
/* Check for convergence */
if( info > 0 ) {
printf( "The algorithm computing SVD failed to converge;\n" );
printf( "the least squares solution could not be computed.\n" );
exit( 1 );
}
/* Print minimum norm solution */
print_matrix( "Minimum norm solution", n, nrhs, b, ldb );
/* Print effective rank */
printf( "\n Effective rank = %6i\n", rank );
/* Print singular values */
print_rmatrix( "Singular values", 1, m, s, 1 );
exit( 0 );
} /* End of LAPACKE_zgelsd Example */
/* Auxiliary routine: printing a matrix */
void print_matrix( char* desc, MKL_INT m, MKL_INT n, MKL_Complex16* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", a[i+j*lda].real, a[i+j*lda].imag );
printf( "\n" );
}
}
/* Auxiliary routine: printing a real matrix */
void print_rmatrix( char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda ) {
MKL_INT i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i+j*lda] );
printf( "\n" );
}
}
Parent topic: ZGELSD Example