Visible to Intel only — GUID: GUID-910F9E60-772F-4B0A-BC74-26CDA09DEECF
Visible to Intel only — GUID: GUID-910F9E60-772F-4B0A-BC74-26CDA09DEECF
Single op partition on GPU
This is an example to demonstrate how to build a simple op graph and run it on gpu.
This is an example to demonstrate how to build a simple op graph and run it on gpu.
Example code: gpu_single_op_partition.cpp
Some key take-aways included in this example:
how to build a single-op partition quickly
how to create an engine, allocator and stream
how to compile a partition
how to execute a compiled partition
Some assumptions in this example:
Only workflow is demonstrated without checking correctness
Unsupported partitions should be handled by users themselves
Public headers
To start using oneDNN Graph, we must include the dnnl_graph.hpp header file in the application. All the C++ APIs reside in namespace dnnl::graph.
#include "oneapi/dnnl/dnnl_graph.hpp"
#include "oneapi/dnnl/dnnl_graph_sycl.hpp"
#include "oneapi/dnnl/dnnl_sycl.hpp"
using namespace dnnl::graph;
using namespace sycl;
#include <assert.h>
#include <iostream>
#include <memory>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include "example_utils.hpp"
#include "graph_example_utils.hpp"
using namespace dnnl::graph;
using data_type = logical_tensor::data_type;
using layout_type = logical_tensor::layout_type;
using dim = logical_tensor::dim;
using dims = logical_tensor::dims;
gpu_single_op_partition_tutorial() function
Build Graph and Get Partitions
In this section, we are trying to create a partition containing the single op matmul without building a graph and getting partition.
Create first Matmul op (dnnl::graph::op) and attaches attributes to it, including transpose_a and transpose_b.
logical_tensor matmul_src0_desc {0, data_type::f32};
logical_tensor matmul_src1_desc {1, data_type::f32};
logical_tensor matmul_dst_desc {2, data_type::f32};
op matmul(0, op::kind::MatMul, {matmul_src0_desc, matmul_src1_desc},
{matmul_dst_desc}, "matmul");
matmul.set_attr<bool>(op::attr::transpose_a, false);
matmul.set_attr<bool>(op::attr::transpose_b, false);
Compile and Execute Partition
In the real case, users like framework should provide device information at this stage. But in this example, we just use a self-defined device to simulate the real behavior.
Create a dnnl::graph::allocator with two user-defined dnnl_graph_sycl_allocate_f and dnnl_graph_sycl_deallocate_f call-back functions.
allocator alloc = sycl_interop::make_allocator(
sycl_malloc_wrapper, sycl_free_wrapper);
Define SYCL queue (code outside of oneDNN graph)
sycl::queue q = (ekind == engine::kind::gpu)
? sycl::queue(
sycl::gpu_selector_v, sycl::property::queue::in_order {})
: sycl::queue(
sycl::cpu_selector_v, sycl::property::queue::in_order {});
Create a dnnl::engine based on SYCL device and context. Also, set a user-defined dnnl::graph::allocator to this engine.
dnnl::engine eng = sycl_interop::make_engine_with_allocator(
q.get_device(), q.get_context(), alloc);
Create a dnnl::stream on a given engine
dnnl::stream strm = dnnl::sycl_interop::make_stream(eng, q);
Skip building graph and getting partition, and directly create the single-op partition
partition part(matmul, dnnl::engine::kind::cpu);
Compile the partition to generate compiled partition with the input and output logical tensors.
compiled_partition cp = part.compile(inputs, outputs, eng);
Execute the compiled partition on the specified stream.
cp.execute(strm, inputs_ts, outputs_ts);