Visible to Intel only — GUID: GUID-8803502F-C1C9-4214-ADF2-A8AD43DBA9D6
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-8803502F-C1C9-4214-ADF2-A8AD43DBA9D6
Reorder between CPU and GPU engines
This C API example demonstrates programming flow when reordering memory between CPU and GPU engines.
This C API example demonstrates programming flow when reordering memory between CPU and GPU engines.
/*******************************************************************************
* Copyright 2019-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "oneapi/dnnl/dnnl.h"
#include "example_utils.h"
size_t product(int n_dims, const dnnl_dim_t dims[]) {
size_t n_elems = 1;
for (int d = 0; d < n_dims; ++d) {
n_elems *= (size_t)dims[d];
}
return n_elems;
}
void fill(dnnl_memory_t mem, int n_dims, const dnnl_dim_t dims[]) {
const size_t n_elems = product(n_dims, dims);
float *array = (float *)malloc(n_elems * sizeof(float));
if (!array) COMPLAIN_EXAMPLE_ERROR_AND_EXIT("%s", "malloc returned NULL");
for (size_t e = 0; e < n_elems; ++e) {
array[e] = e % 7 ? 1.0f : -1.0f;
}
write_to_dnnl_memory(array, mem);
free(array);
}
int find_negative(dnnl_memory_t mem, int n_dims, const dnnl_dim_t dims[]) {
const size_t n_elems = product(n_dims, dims);
float *array = (float *)malloc(n_elems * sizeof(float));
if (!array) COMPLAIN_EXAMPLE_ERROR_AND_EXIT("%s", "malloc returned NULL");
read_from_dnnl_memory(array, mem);
int negs = 0;
for (size_t e = 0; e < n_elems; ++e) {
negs += array[e] < 0.0f;
}
free(array);
return negs;
}
void cross_engine_reorder() {
dnnl_engine_t engine_cpu, engine_gpu;
CHECK(dnnl_engine_create(&engine_cpu, validate_engine_kind(dnnl_cpu), 0));
CHECK(dnnl_engine_create(&engine_gpu, validate_engine_kind(dnnl_gpu), 0));
const dnnl_dims_t tz = {2, 16, 1, 1};
dnnl_memory_desc_t m_cpu_md, m_gpu_md;
CHECK(dnnl_memory_desc_create_with_tag(
&m_cpu_md, 4, tz, dnnl_f32, dnnl_nchw));
CHECK(dnnl_memory_desc_create_with_tag(
&m_gpu_md, 4, tz, dnnl_f32, dnnl_nchw));
dnnl_memory_t m_cpu, m_gpu;
CHECK(dnnl_memory_create(
&m_cpu, m_cpu_md, engine_cpu, DNNL_MEMORY_ALLOCATE));
CHECK(dnnl_memory_create(
&m_gpu, m_gpu_md, engine_gpu, DNNL_MEMORY_ALLOCATE));
fill(m_cpu, 4, tz);
if (find_negative(m_cpu, 4, tz) == 0)
COMPLAIN_EXAMPLE_ERROR_AND_EXIT(
"%s", "incorrect data fill, no negative values found");
/* reorder cpu -> gpu */
dnnl_primitive_desc_t r1_pd;
CHECK(dnnl_reorder_primitive_desc_create(
&r1_pd, m_cpu_md, engine_cpu, m_gpu_md, engine_gpu, NULL));
dnnl_primitive_t r1;
CHECK(dnnl_primitive_create(&r1, r1_pd));
/* relu gpu */
dnnl_primitive_desc_t relu_pd;
CHECK(dnnl_eltwise_forward_primitive_desc_create(&relu_pd, engine_gpu,
dnnl_forward, dnnl_eltwise_relu, m_gpu_md, m_gpu_md, 0.0f, 0.0f,
NULL));
dnnl_primitive_t relu;
CHECK(dnnl_primitive_create(&relu, relu_pd));
/* reorder gpu -> cpu */
dnnl_primitive_desc_t r2_pd;
CHECK(dnnl_reorder_primitive_desc_create(
&r2_pd, m_gpu_md, engine_gpu, m_cpu_md, engine_cpu, NULL));
dnnl_primitive_t r2;
CHECK(dnnl_primitive_create(&r2, r2_pd));
dnnl_stream_t stream_gpu;
CHECK(dnnl_stream_create(
&stream_gpu, engine_gpu, dnnl_stream_default_flags));
dnnl_exec_arg_t r1_args[] = {{DNNL_ARG_FROM, m_cpu}, {DNNL_ARG_TO, m_gpu}};
CHECK(dnnl_primitive_execute(r1, stream_gpu, 2, r1_args));
dnnl_exec_arg_t relu_args[]
= {{DNNL_ARG_SRC, m_gpu}, {DNNL_ARG_DST, m_gpu}};
CHECK(dnnl_primitive_execute(relu, stream_gpu, 2, relu_args));
dnnl_exec_arg_t r2_args[] = {{DNNL_ARG_FROM, m_gpu}, {DNNL_ARG_TO, m_cpu}};
CHECK(dnnl_primitive_execute(r2, stream_gpu, 2, r2_args));
CHECK(dnnl_stream_wait(stream_gpu));
if (find_negative(m_cpu, 4, tz) != 0)
COMPLAIN_EXAMPLE_ERROR_AND_EXIT(
"%s", "found negative values after ReLU applied");
/* clean up */
dnnl_primitive_desc_destroy(relu_pd);
dnnl_primitive_desc_destroy(r1_pd);
dnnl_primitive_desc_destroy(r2_pd);
dnnl_primitive_destroy(relu);
dnnl_primitive_destroy(r1);
dnnl_primitive_destroy(r2);
dnnl_memory_destroy(m_cpu);
dnnl_memory_destroy(m_gpu);
dnnl_memory_desc_destroy(m_cpu_md);
dnnl_memory_desc_destroy(m_gpu_md);
dnnl_stream_destroy(stream_gpu);
dnnl_engine_destroy(engine_cpu);
dnnl_engine_destroy(engine_gpu);
}
int main() {
cross_engine_reorder();
printf("Example passed on CPU/GPU.\n");
return 0;
}