Visible to Intel only — GUID: GUID-04F67380-FC05-4418-A969-75FB9052E3E7
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-04F67380-FC05-4418-A969-75FB9052E3E7
prelu cpp
Annotated version: Primitive Example
Annotated version: Primitive Example
/*******************************************************************************
* Copyright 2020-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include "dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
using tag = memory::format_tag;
using dt = memory::data_type;
void prelu_example(dnnl::engine::kind engine_kind) {
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);
// Create dnnl::stream.
dnnl::stream engine_stream(engine);
// Tensor dimensions.
const memory::dim N = 3, // batch size
IC = 3, // channels
IH = 227, // tensor height
IW = 227; // tensor width
// Source (src), weights and destination (dst) tensors dimensions.
const memory::dims src_dims = {N, IC, IH, IW};
const memory::dims weights_dims = {N, IC, IH, IW};
const memory::dims dst_dims = {N, IC, IH, IW};
// Allocate buffers. In this example, out-of-place primitive execution is
// demonstrated since both src and dst are required for later backward
// propagation.
std::vector<float> src_data(product(src_dims));
std::vector<float> weights_data(product(weights_dims));
std::vector<float> dst_data(product(dst_dims));
// Initialize src tensor.
std::generate(src_data.begin(), src_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
// Initialize weights tensor.
std::fill(weights_data.begin(), weights_data.end(), 0.3f);
// Create memory objects for tensor data (src, weights, dst). In this
// example, NCHW layout is assumed for src, weights and dst.
auto user_src_mem = memory({src_dims, dt::f32, tag::nchw}, engine);
auto user_weights_mem = memory({weights_dims, dt::f32, tag::nchw}, engine);
auto user_dst_mem = memory({dst_dims, dt::f32, tag::nchw}, engine);
// Create memory descriptors for the primitive. Src tag is set
// to match src memory object. Setting weights tag to format_tag::any
// enables the PReLU primitive to choose memory layout for an optimized
// primitive implementation, and that layout may differ from the one
// provided by the user.
auto src_md = memory::desc(src_dims, dt::f32, tag::nchw);
auto weights_md = memory::desc(weights_dims, dt::f32, tag::any);
auto dst_md = memory::desc(src_dims, dt::f32, tag::any);
// Write data to memory object's handle.
write_to_dnnl_memory(src_data.data(), user_src_mem);
write_to_dnnl_memory(weights_data.data(), user_weights_mem);
// Create primitive descriptor.
auto prelu_pd = prelu_forward::primitive_desc(
engine, prop_kind::forward_training, src_md, weights_md, dst_md);
// For now, assume that the weights memory layout generated
// by the primitive and the one provided by the user are identical.
auto prelu_weights_mem = user_weights_mem;
// Reorder the data in case the weights memory layout generated by
// the primitive and the one provided by the user are different. In this
// case, we create additional memory object with internal buffers that will
// contain the reordered data.
if (prelu_pd.weights_desc() != user_weights_mem.get_desc()) {
prelu_weights_mem = memory(prelu_pd.weights_desc(), engine);
reorder(user_weights_mem, prelu_weights_mem)
.execute(engine_stream, user_weights_mem, prelu_weights_mem);
}
// Create the primitive.
auto prelu_prim = prelu_forward(prelu_pd);
// Primitive arguments.
std::unordered_map<int, memory> prelu_args;
prelu_args.insert({DNNL_ARG_SRC, user_src_mem});
prelu_args.insert({DNNL_ARG_WEIGHTS, prelu_weights_mem});
prelu_args.insert({DNNL_ARG_DST, user_dst_mem});
// Primitive execution: PReLU.
prelu_prim.execute(engine_stream, prelu_args);
// Wait for the computation to finalize.
engine_stream.wait();
// Read data from memory object's handle.
read_from_dnnl_memory(dst_data.data(), user_dst_mem);
}
int main(int argc, char **argv) {
return handle_example_errors(prelu_example, parse_engine_kind(argc, argv));
}