Visible to Intel only — GUID: GUID-50364152-E6D3-40F7-9405-9A37FCB9EB36
Visible to Intel only — GUID: GUID-50364152-E6D3-40F7-9405-9A37FCB9EB36
MatMul Tutorial: weights decompression
C++ API example demonstrating how one can use MatMul with compressed weights.
Concepts:
Asymmetric quantization
Zero points: dnnl::primitive_attr::set_zero_points()
Create primitive once, use multiple times
Weights pre-packing: use dnnl::memory::format_tag::any
Assumptions:
The shape of the weights (matrix ) is known in advance, the data type is int8_t and shifted from 0 (i.e. the zero point is not 0).
The source matrix and destination matrix have floating point data type.
Scaling (re-quantization) factor specified at run-time only.
Since the shape of weights is known in advance, the MatMul weights can be created with format tag dnnl::memory::format_tag::any to enable the library to choose the most appropriate layout for best performance.
/*******************************************************************************
* Copyright 2023-2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <random>
#include <stdexcept>
#include <vector>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
namespace {
void init_vector(std::vector<float> &v) {
std::mt19937 gen;
std::uniform_real_distribution<float> u(0, 1);
for (auto &e : v)
e = u(gen);
}
} // namespace
int number_of_runs = 1;
// Create a MatMul primitive descriptor for the following op:
// C_f32 = A_f32 * (B_s8 - zp_B) * sc_B[:]
//
// Here:
// - Matrices A and C are of f32 data type.
// - The B matrix is stored as int8_t, its zero point is zp_B, and all its
// dimensions are known. This matrix can be a matrix of compressed weights
// in an MLP topology.
// - The weights scaling values are not known at the primitive creation time.
matmul::primitive_desc matmul_pd_create(
int64_t M, int64_t N, int64_t K, int64_t G, const engine &eng) {
memory::desc a_md({M, K}, memory::data_type::f32, {K, 1}); // M x K layout
memory::desc b_md({K, N}, memory::data_type::s8, memory::format_tag::any);
memory::desc c_md({M, N}, memory::data_type::f32, {N, 1}); // M x N layout
// Create attributes and indicate that the alpha and zero points are
// runtime parameters
primitive_attr attr;
// Set scales with multiple scales along K and N dimensions and with groups along K.
attr.set_scales(DNNL_ARG_WEIGHTS,
/* mask */ (1 << 0) + (1 << 1), {G, 1}, memory::data_type::f32);
// Set a single zero point with s8 data type.
attr.set_zero_points(
DNNL_ARG_WEIGHTS, /* mask */ 0, {}, memory::data_type::s8);
// Set fpmath mode with `apply_to_int=true` to apply fpmath mode behavior to
// integral primitives (in this example, matmul).
attr.set_fpmath_mode(fpmath_mode::bf16, true);
// Create a MatMul primitive descriptor
return matmul::primitive_desc(eng, a_md, b_md, c_md, attr);
}
void prepare_input(memory &A_f32_mem, memory &sc_B_mem, memory &zp_B_mem) {
int64_t M = A_f32_mem.get_desc().get_dims()[0];
int64_t N = sc_B_mem.get_desc().get_dims()[0];
int64_t K = A_f32_mem.get_desc().get_dims()[1];
int64_t NUM_G = sc_B_mem.get_desc().get_dims()[1];
std::vector<float> A_f32(M * K);
init_vector(A_f32);
std::vector<float> sc_B(NUM_G * N);
init_vector(sc_B);
int8_t zp_B = 2;
write_to_dnnl_memory(A_f32.data(), A_f32_mem);
write_to_dnnl_memory(&zp_B, zp_B_mem);
write_to_dnnl_memory(sc_B.data(), sc_B_mem);
}
void infer(const matmul &matmul_p, int64_t M, int64_t N, int64_t K, int64_t G,
const memory &B_s8_mem, const engine &eng) {
// input of the current layer / operation
memory A_f32_mem({{M, K}, memory::data_type::f32, {K, 1}}, eng);
// De-quantization parameters (eg. Scale and Shift)
const int64_t n_groups = K / G;
memory sc_B_mem({{N, n_groups}, memory::data_type::f32, {1, N}}, eng);
memory zp_B_mem({{1}, memory::data_type::s8, {1}}, eng);
// the function below fills dnnl::memory with some values
// these memories, typically, come from the previous layers / operations
// with meaningful data inside
prepare_input(A_f32_mem, sc_B_mem, zp_B_mem);
// output - no initialization required
memory C_f32_mem({{M, N}, memory::data_type::f32, {N, 1}}, eng);
stream s(eng);
for (int run = 0; run < number_of_runs; ++run)
matmul_p.execute(s,
{{DNNL_ARG_SRC, A_f32_mem}, {DNNL_ARG_WEIGHTS, B_s8_mem},
{DNNL_ARG_DST, C_f32_mem},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, sc_B_mem},
{DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_WEIGHTS,
zp_B_mem}});
s.wait();
}
void weights_decompression_matmul(engine::kind engine_kind) {
engine eng(engine_kind, 0);
const int64_t K = 96;
const int64_t N = 1000;
const int64_t M = 100;
// Quantization Group size for scales
const int64_t G = K / 2;
auto matmul_pd = matmul_pd_create(M, N, K, G, eng);
// Original weights stored as float in a known format
std::vector<float> B_f32(K * N);
init_vector(B_f32);
// Pre-packed weights stored as int8_t
memory B_s8_mem(matmul_pd.weights_desc(), eng);
{
stream s(eng);
memory B_f32_mem(
{{K, N}, memory::data_type::f32, memory::format_tag::ab}, eng);
write_to_dnnl_memory(B_f32.data(), B_f32_mem);
reorder(B_f32_mem, B_s8_mem).execute(s, B_f32_mem, B_s8_mem);
s.wait();
}
matmul matmul_p(matmul_pd);
infer(matmul_p, M, N, K, G, B_s8_mem, eng);
}
int main(int argc, char **argv) {
engine::kind engine_kind = parse_engine_kind(argc, argv);
// GPU is not supported
if (engine_kind != engine::kind::cpu) return 0;
return handle_example_errors(weights_decompression_matmul, engine_kind);
}