Visible to Intel only — GUID: GUID-C7B3A63F-97F5-4B4B-9C19-1EB6F4EC3CD9
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-C7B3A63F-97F5-4B4B-9C19-1EB6F4EC3CD9
cnn_inference_int8 cpp
This C++ API example demonstrates how to run AlexNet’s conv3 and relu3 with int8 data type. Annotated version: CNN int8 inference example
This C++ API example demonstrates how to run AlexNet’s conv3 and relu3 with int8 data type. Annotated version: CNN int8 inference example
/*******************************************************************************
* Copyright 2018-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <stdexcept>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
void simple_net_int8(engine::kind engine_kind) {
using tag = memory::format_tag;
using dt = memory::data_type;
auto eng = engine(engine_kind, 0);
stream s(eng);
const int batch = 8;
//[Configure tensor shapes]
// AlexNet: conv3
// {batch, 256, 13, 13} (x) {384, 256, 3, 3}; -> {batch, 384, 13, 13}
// strides: {1, 1}
memory::dims conv_src_tz = {batch, 256, 13, 13};
memory::dims conv_weights_tz = {384, 256, 3, 3};
memory::dims conv_bias_tz = {384};
memory::dims conv_dst_tz = {batch, 384, 13, 13};
memory::dims conv_strides = {1, 1};
memory::dims conv_padding = {1, 1};
//[Configure tensor shapes]
//[Choose scaling factors]
// Choose scaling factors for input, weight and output
std::vector<float> src_scales = {1.8f};
std::vector<float> weight_scales = {2.0f};
std::vector<float> dst_scales = {0.55f};
//[Choose scaling factors]
//[Set scaling mask]
const int src_mask = 0;
const int weight_mask = 0;
const int dst_mask = 0;
//[Set scaling mask]
// Allocate input and output buffers for user data
std::vector<float> user_src(batch * 256 * 13 * 13);
std::vector<float> user_dst(batch * 384 * 13 * 13);
// Allocate and fill buffers for weights and bias
std::vector<float> conv_weights(product(conv_weights_tz));
std::vector<float> conv_bias(product(conv_bias_tz));
//[Allocate buffers]
auto user_src_memory = memory({{conv_src_tz}, dt::f32, tag::nchw}, eng);
write_to_dnnl_memory(user_src.data(), user_src_memory);
auto user_weights_memory
= memory({{conv_weights_tz}, dt::f32, tag::oihw}, eng);
write_to_dnnl_memory(conv_weights.data(), user_weights_memory);
auto user_bias_memory = memory({{conv_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv_bias.data(), user_bias_memory);
//[Allocate buffers]
//[Create convolution memory descriptors]
auto conv_src_md = memory::desc({conv_src_tz}, dt::u8, tag::any);
auto conv_bias_md = memory::desc({conv_bias_tz}, dt::s8, tag::any);
auto conv_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::any);
auto conv_dst_md = memory::desc({conv_dst_tz}, dt::u8, tag::any);
//[Create convolution memory descriptors]
//[Configure scaling]
primitive_attr conv_attr;
conv_attr.set_scales_mask(DNNL_ARG_SRC, src_mask);
conv_attr.set_scales_mask(DNNL_ARG_WEIGHTS, weight_mask);
conv_attr.set_scales_mask(DNNL_ARG_DST, dst_mask);
// Prepare dst scales
auto dst_scale_md = memory::desc({1}, dt::f32, tag::x);
auto dst_scale_memory = memory(dst_scale_md, eng);
write_to_dnnl_memory(dst_scales.data(), dst_scale_memory);
//[Configure scaling]
//[Configure post-ops]
const float ops_alpha = 0.f; // relu negative slope
const float ops_beta = 0.f;
post_ops ops;
ops.append_eltwise(algorithm::eltwise_relu, ops_alpha, ops_beta);
conv_attr.set_post_ops(ops);
//[Configure post-ops]
// check if int8 convolution is supported
try {
convolution_forward::primitive_desc(eng, prop_kind::forward,
algorithm::convolution_direct, conv_src_md, conv_weights_md,
conv_bias_md, conv_dst_md, conv_strides, conv_padding,
conv_padding, conv_attr);
} catch (error &e) {
if (e.status == dnnl_unimplemented)
throw example_allows_unimplemented {
"No int8 convolution implementation is available for this "
"platform.\n"
"Please refer to the developer guide for details."};
// on any other error just re-throw
throw;
}
//[Create convolution primitive descriptor]
auto conv_prim_desc = convolution_forward::primitive_desc(eng,
prop_kind::forward, algorithm::convolution_direct, conv_src_md,
conv_weights_md, conv_bias_md, conv_dst_md, conv_strides,
conv_padding, conv_padding, conv_attr);
//[Create convolution primitive descriptor]
//[Quantize data and weights]
auto conv_src_memory = memory(conv_prim_desc.src_desc(), eng);
primitive_attr src_attr;
src_attr.set_scales_mask(DNNL_ARG_DST, src_mask);
auto src_scale_md = memory::desc({1}, dt::f32, tag::x);
auto src_scale_memory = memory(src_scale_md, eng);
write_to_dnnl_memory(src_scales.data(), src_scale_memory);
auto src_reorder_pd
= reorder::primitive_desc(eng, user_src_memory.get_desc(), eng,
conv_src_memory.get_desc(), src_attr);
auto src_reorder = reorder(src_reorder_pd);
src_reorder.execute(s,
{{DNNL_ARG_FROM, user_src_memory}, {DNNL_ARG_TO, conv_src_memory},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, src_scale_memory}});
auto conv_weights_memory = memory(conv_prim_desc.weights_desc(), eng);
primitive_attr weight_attr;
weight_attr.set_scales_mask(DNNL_ARG_DST, weight_mask);
auto wei_scale_md = memory::desc({1}, dt::f32, tag::x);
auto wei_scale_memory = memory(wei_scale_md, eng);
write_to_dnnl_memory(weight_scales.data(), wei_scale_memory);
auto weight_reorder_pd
= reorder::primitive_desc(eng, user_weights_memory.get_desc(), eng,
conv_weights_memory.get_desc(), weight_attr);
auto weight_reorder = reorder(weight_reorder_pd);
weight_reorder.execute(s,
{{DNNL_ARG_FROM, user_weights_memory},
{DNNL_ARG_TO, conv_weights_memory},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, wei_scale_memory}});
auto conv_bias_memory = memory(conv_prim_desc.bias_desc(), eng);
write_to_dnnl_memory(conv_bias.data(), conv_bias_memory);
//[Quantize data and weights]
auto conv_dst_memory = memory(conv_prim_desc.dst_desc(), eng);
//[Create convolution primitive]
auto conv = convolution_forward(conv_prim_desc);
conv.execute(s,
{{DNNL_ARG_SRC, conv_src_memory},
{DNNL_ARG_WEIGHTS, conv_weights_memory},
{DNNL_ARG_BIAS, conv_bias_memory},
{DNNL_ARG_DST, conv_dst_memory},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, src_scale_memory},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, wei_scale_memory},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, dst_scale_memory}});
//[Create convolution primitive]
auto user_dst_memory = memory({{conv_dst_tz}, dt::f32, tag::nchw}, eng);
write_to_dnnl_memory(user_dst.data(), user_dst_memory);
primitive_attr dst_attr;
dst_attr.set_scales_mask(DNNL_ARG_SRC, dst_mask);
auto dst_reorder_pd
= reorder::primitive_desc(eng, conv_dst_memory.get_desc(), eng,
user_dst_memory.get_desc(), dst_attr);
auto dst_reorder = reorder(dst_reorder_pd);
dst_reorder.execute(s,
{{DNNL_ARG_FROM, conv_dst_memory}, {DNNL_ARG_TO, user_dst_memory},
{DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, dst_scale_memory}});
//[Dequantize the result]
s.wait();
}
int main(int argc, char **argv) {
return handle_example_errors(
simple_net_int8, parse_engine_kind(argc, argv));
}