Visible to Intel only — GUID: GUID-F2180413-AC36-454A-8598-6AA0AB7AD7BE
Visible to Intel only — GUID: GUID-F2180413-AC36-454A-8598-6AA0AB7AD7BE
Bnorm u8 by binary post-ops example
The example implements the Batch normalization u8 via the following operations: binary_sub(src, mean), binary_div(tmp_dst, variance), binary_mul(tmp_dst, scale), binary_add(tmp_dst, shift).
The example implements the Batch normalization u8 via the following operations: binary_sub(src, mean), binary_div(tmp_dst, variance), binary_mul(tmp_dst, scale), binary_add(tmp_dst, shift).
Some key take-aways include:
How tensors are implemented and submitted to primitives.
How primitives are created.
How to use multiple binary post operations.
How to use different data types in binary.
/*******************************************************************************
* Copyright 2020-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include "dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
using tag = memory::format_tag;
using dt = memory::data_type;
void bnorm_u8_via_binary_postops(dnnl::engine::kind engine_kind) {
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);
// Create dnnl::stream.
dnnl::stream engine_stream(engine);
// Tensor dimensions.
const memory::dim N = 3, // batch size
IC = 3, // channels
IH = 150, // tensor height
IW = 150; // tensor width
// Tensors dimensions.
memory::dims src_dims = {N, IC, IH, IW};
memory::dims params_dims = {1, IC, 1, 1};
// Allocate buffers.
std::vector<float> src_data(product(src_dims));
std::vector<float> mean_data(product(params_dims));
std::vector<float> variance_data(product(params_dims));
std::vector<float> scale_data(product(params_dims));
std::vector<float> shift_data(product(params_dims));
std::vector<float> oscale_data(product(params_dims));
// Initialize
std::generate(src_data.begin(), src_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
std::generate(mean_data.begin(), mean_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(variance_data.begin(), variance_data.end(), []() {
static int i = 0;
float value = std::abs(std::sin(i++ * 4.f));
// Avoid division by zero. Variance should be positive.
return value == 0.f ? 1.f : value;
});
std::generate(scale_data.begin(), scale_data.end(), []() {
static int i = 0;
return std::sin(i++ * 6.f);
});
std::generate(shift_data.begin(), shift_data.end(), []() {
static int i = 0;
return std::sin(i++ * 8.f);
});
std::generate(
oscale_data.begin(), oscale_data.end(), []() { return 0.5f; });
// Create descriptors.
auto src_md = memory::desc(src_dims, dt::u8, tag::nhwc);
auto mean_md = memory::desc(params_dims, dt::f32, tag::nhwc);
auto variance_md = memory::desc(params_dims, dt::f32, tag::nhwc);
auto scale_md = memory::desc(params_dims, dt::f32, tag::nhwc);
auto shift_md = memory::desc(params_dims, dt::f32, tag::nhwc);
auto oscale_md = memory::desc(params_dims, dt::f32, tag::nhwc);
// Create src memory objects.
auto src_mem = memory(src_md, engine);
auto mean_mem = memory(mean_md, engine);
auto variance_mem = memory(variance_md, engine);
auto scale_mem = memory(scale_md, engine);
auto shift_mem = memory(shift_md, engine);
auto oscale_mem = memory(oscale_md, engine);
// Write data to memory object's handle.
write_to_dnnl_memory(src_data.data(), src_mem);
write_to_dnnl_memory(mean_data.data(), mean_mem);
write_to_dnnl_memory(variance_data.data(), variance_mem);
write_to_dnnl_memory(scale_data.data(), scale_mem);
write_to_dnnl_memory(shift_data.data(), shift_mem);
write_to_dnnl_memory(oscale_data.data(), oscale_mem);
// Bnorm operation with scale and shift
post_ops binary_ops;
// dst_tmp = dst_tmp / variance
binary_ops.append_binary(algorithm::binary_div, variance_md);
// dst_tmp = dst_tmp * scale
binary_ops.append_binary(algorithm::binary_mul, scale_md);
// dst_tmp = dst_tmp + shift
binary_ops.append_binary(algorithm::binary_add, shift_md);
// dst = dst_tmp * output_scale (only for re-quantization)
binary_ops.append_binary(algorithm::binary_mul, oscale_md);
primitive_attr binary_attr;
binary_attr.set_post_ops(binary_ops);
// Create primitive descriptor.
// dst_tmp = src - mean
auto binary_pd = binary::primitive_desc(engine, algorithm::binary_sub,
src_md, mean_md, src_md, binary_attr);
// Create the primitive.
auto binary_prim = binary(binary_pd);
// Primitive arguments.
std::unordered_map<int, memory> binary_args;
binary_args.insert({DNNL_ARG_SRC_0, src_mem});
binary_args.insert({DNNL_ARG_SRC_1, mean_mem});
// In-place mode (dst is src)
binary_args.insert({DNNL_ARG_DST, src_mem});
binary_args.insert(
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1, variance_mem});
binary_args.insert(
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(1) | DNNL_ARG_SRC_1, scale_mem});
binary_args.insert(
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(2) | DNNL_ARG_SRC_1, shift_mem});
binary_args.insert(
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(3) | DNNL_ARG_SRC_1, oscale_mem});
// Primitive execution
binary_prim.execute(engine_stream, binary_args);
// Wait for the computation to finalize.
engine_stream.wait();
// Read data from memory object's handle.
read_from_dnnl_memory(src_data.data(), src_mem);
}
int main(int argc, char **argv) {
return handle_example_errors(
bnorm_u8_via_binary_postops, parse_engine_kind(argc, argv));
}