Visible to Intel only — GUID: dzg1628543493822
Ixiasoft
1. F-Tile Overview
2. F-Tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. F-Tile PMA/FEC Direct PHY Design Implementation
6. Supported Tools
7. Debugging F-Tile Transceiver Links
8. F-Tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
9. Document Revision History for the F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
A. Appendix
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. General and Common Datapath Options
3.3.2. TX Datapath Options
3.3.3. RX Datapath Options
3.3.4. RS-FEC (Reed Solomon Forward Error Correction) Options
3.3.5. Avalon® Memory Mapped Interface Options
3.3.6. Register Map IP-XACT Support
3.3.7. Example Design Generation
3.3.8. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
4.1. IP Parameters
4.2. IP Port List
4.3. Mode of System PLL - System PLL Reference Clock and Output Frequencies
4.4. Guidelines for F-Tile Reference and System PLL Clocks Intel® FPGA IP Usage
4.5. Guidelines for Refclk #i is Active At and After Device Configuration
4.6. Guidelines for Obtaining the Lock Status and Resetting the FGT and FHT TX PLLs
5.1. Implementing the F-Tile PMA/FEC Direct PHY Design
5.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5.5. Enabling Custom Cadence Generation Ports and Logic
5.6. Connecting the F-Tile PMA/FEC Direct PHY Design IP
5.7. Simulating the F-Tile PMA/FEC Direct PHY Design
5.8. F-Tile Interface Planning
7.2.1. Modifying the Design to Enable F-Tile Transceiver Debug
7.2.2. Programming the Design into an Intel FPGA
7.2.3. Loading the Design to the Transceiver Toolkit
7.2.4. Creating Transceiver Links
7.2.5. Running BER Tests
7.2.6. Running Eye Viewer Tests
7.2.7. Running Link Optimization Tests
7.2.8. Checking FEC Statistics
7.2.9. Vertical Bathtub Curve Measurements (VBCM) Data
Visible to Intel only — GUID: dzg1628543493822
Ixiasoft
3.14.2.1.1. Direct Register Method Examples
The followig examples demostate the diect egiste method to cofigue the FGT PMA.
TX Equalize Co-efficiets
To set the TX equalize co-efficiets:
- Wite the TX equalize pe_tap_2 egiste (0x47830[18:16]) with valid value.
- Wite the TX equalize pe_tap_1 egiste (0x47830[9:5]) with valid value.
- Wite the TX equalize mai_tap egiste (0x47830[15:10]) with valid value.
- Wite the TX equalize post_tap_1 egiste (0x47830[4:0]) with valid value.
Mute TX Output
To mute TX output (make TX output 0v):
- Wite 2’b11 to 0x41750[25:24]
- Wite 2’b00 to 0x41750[25:24]
Iteal Seial Loopback
Cache calibatio egistes listed i Appedix A.3. 40
To eable iteal seial loopback:
- Wite calibatio egistes with values listed i Appedix A.3. 40
- Wite 0x0 to 0x41418[31]
- Wite 0x1 to 0x41420[25]
- Wite 0x1 to 0x41418[29]
- Wite 0x1 to 0x41418[31]
- Wite calibatio egistes with cached values.40
- Wite 0x0 to 0x41418[31]
- Wite 0x0 to 0x41418[29]
- Wite 0x0 to 0x41420[25]
Revese Paallel Loopback
To eable the Revese Paallel Loopback:
To disable the Revese Paallel Loopback:
- Wait fo x_eady asset
- Asset TX eset
- Wait fo TX eset Ack
- Wite 0x0 to 0x41830[31:0]
- Wite 0x0 to 0x41768[24]
- Wite 0x1 to 0x41414[29]
- Wite 0x1 to 0x4141C[30]
- Wite 0x1 to 0x41418[31]
- Deasset TX eset
- Wait fo TX eset ACK deasset
- If FEC is eabled, you must espod to the tx_am_ge_stat sigal ad geeate the tx_am_ge_2x_ack pulse to get tx_eady to asset. This step is also eeded whe you use the F-Tile Tasceive Toolkit to eable the RX to TX evese paallel loopback.
- Asset TX eset
- Wite 0x3 to 0x41830[31:0]
- Wite 0x1 to 0x41768[24]
- Wite 0x0 to 0x41414[29]
- Wite 0x0 to 0x4141C[30]
- Wite 0x0 to 0x41418[31]
- Deasset TX eset
- Wait fo TX eset ACK deasset
- If FEC is eabled, you must espod to the tx_am_ge_stat sigal ad geeate the tx_am_ge_2x_ack pulse to get tx_eady to asset. This step is also eeded whe you use the F-Tile Tasceive Toolkit to disable the RX to TX evese paallel loopback.
TX to RX Paallel Loopback
To eable the TX to RX Paallel Loopback:
- Wite 0x1 to 0x416A4[8]
- Wite 0x1 to 0x41418[31]
- Wite 0x0 to 0x416A4[8]
- Wite 0x0 to 0x41418[31]
Polaity Ivesio
TX polaity ivesio:
- Wite 0x1 to 0x41428[7]
TX polaity ivesio evet back:
- Wite 0x0 to 0x41428[7]
RX polaity ivesio:
- Wite 0x1 to 0x41428[6]
RX polaity ivesio evet back:
- Wite 0x0 to 0x41428[6]
Measuig the Bit Eo Rate (BER) with FGT PMAs
- Check that the RX lik is eady fo the desied lae:
- Read 0x814[31:16] 41 to cofim that the coespodig lae's x_cd_locked2data = 1
- Assig the PRBS patte value:
- Fo TX:
- Set valid values to 0x416AC[31:28]
- Fo RX:
- Set valid values to 0x41428[3:0]
- Valid values fo PRBS patte:
- UDP : 0x0
- PRBS7 : 0x1
- PRBS9 : 0x2
- PRBS11 : 0x3
- PRBS13 : 0x4
- PRBS15 : 0x5
- PRBS23 : 0x6
- PRBS28 : 0x7
- PRBS31 : 0x8
- QPRBS13 : 0x9
- PRBS13Q : 0xa
- PRBS31Q : 0xb
- SSPR : 0xc
- SSPR1 : 0xd
- SSPRQ : 0xe
- Fo TX:
- BER Stat:
- Wite 0x1 to 0x416AC[23]
- Wite 0x1 to 0x41424[26]
- Wite 0x3 to 0x4176C[28:27]
- Wite 0x3 to 0x415B4[19:18]
- Iject oe bit of eo (epeat the followig two steps multiple times to iject multiple bits of eo):
- Wite 0x1 to 0x416AC[22]
- Wite 0x0 to 0x416AC[22]
- Eo Cout:
- Read fom 0x41444[31:0]
- To check oveflow, ead 0x4143C[21], 1 = oveflow, 0 = o oveflow
- To clea the coute, toggle 0x415B4[19:18]:
- Wite 0x0 to 0x415B4[19:18]
- Wite 0x3 to 0x415B4[19:18]
- BER Stop:
- Wite 0x0 to 0x416AC[23]
- Wite 0x0 to 0x41424[26]
- Wite 0x0 to 0x4176C[28:27]
- Wite 0x0 to 0x415B4[19:18]
The sequece is valid oly whe RX maual tuig is used (RX auto adaptatio is bypassed). If RX auto adaptatio is used, use the FGT attibute access method.
40 This step is optioal ad you oly eed it whe a exteal sigal is peset o the eceive's iput.
41 Addess 0x814 is pat of the PMA ad FEC soft CSR egiste.