Visible to Intel only — GUID: ons1634643366205
Ixiasoft
2.1.1. Directory Structure
2.1.2. Generating the Design
2.1.3. Simulating the E-tile Ethernet IP for Intel Agilex® 7 FPGA Design Example Testbench
2.1.4. Compiling the Compilation-Only Project
2.1.5. Compiling and Configuring the Design Example in Hardware
2.1.6. Testing the E-tile Ethernet IP for Intel Agilex® 7 FPGA Hardware Design Example
2.2.1.1. Non-PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.2. PTP 10GE/25GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.2.1.3. 10GE/25GE PCS Only, OTN, or FlexE with Optional RS-FEC Simulation Design Example
2.2.1.4. 10GE/25GE Custom PCS with Optional RS-FEC Simulation Design Example
2.3.1. Simulation Design Examples
2.3.2. Hardware Design Examples
2.3.3. 100GE MAC+PCS with Optional RS-FEC Design Example Interface Signals
2.3.4. 100GE PCS with Optional RS-FEC Design Example Interface Signals
2.3.5. 100GE MAC+PCS with Optional RS-FEC Design Example Registers
2.3.6. 100GE PCS with Optional RS-FEC Design Example Registers
2.3.1.1. Non-PTP E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE MAC+PCS with Optional RS-FEC Simulation Design Example
2.3.1.2. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE MAC+PCS with Optional RS-FEC and PTP Simulation Design Example
2.3.1.3. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE PCS Only with Optional RS-FEC Simulation Design Example
2.3.1.4. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE OTN with Optional RS-FEC Simulation Design Example
2.3.1.5. E-tile Ethernet IP for Intel Agilex® 7 FPGA 100GE FlexE with Optional RS-FEC Simulation Design Example
2.3.2.1. 100GE MAC+PCS with Optional RS-FEC and PMA Adaptation Flow Hardware Design Example Components
2.3.2.2. 100GE MAC+PCS with Optional RS-FEC and PTP Hardware Design Example
2.3.2.3. 100GE PCS with Optional RS-FEC Hardware Design Example Components
2.3.2.4. Ethernet Adaptation Flow for 100G (CAUI-2) PAM4 <---> 100G (CAUI-4) NRZ Dynamic Reconfiguration Design Example
3.1.1. Hardware and Software Requirements
3.1.2. Generating the Design
3.1.3. Directory Structure
3.1.4. Simulating the Design Example Testbench
3.1.5. Compiling the Compilation-Only Project
3.1.6. Compiling and Configuring the Design Example in Hardware
3.1.7. Testing the E-tile CPRI PHY Intel® FPGA IP Hardware Design Example
4.1. Quick Start Guide
4.2. 10G/25G Ethernet Dynamic Reconfiguration Design Examples
4.3. 25G Ethernet to CPRI Dynamic Reconfiguration Design Example
4.4. CPRI Dynamic Reconfiguration Design Examples
4.5. 100G Ethernet Dynamic Reconfiguration Design Example
4.6. Document Revision History for the E-tile Dynamic Reconfiguration Design Example
4.5.1. Functional Description
4.5.2. Testing the 100G Ethernet Dynamic Reconfiguration Hardware Design Example
4.5.3. Simulation Design Examples
4.5.4. 100GE DR Hardware Design Examples
4.5.5. 100G Ethernet Dynamic Reconfiguration Design Example Interface Signals
4.5.6. 100G Ethernet Dynamic Reconfiguration Examples Registers
4.5.7. Steps to Enable FEC
4.5.8. Steps to Disable FEC
Visible to Intel only — GUID: ons1634643366205
Ixiasoft
4.2.6. Dynamic Reconfiguration Flow for 25GbE PTP FEC to 25GbE PTP Non-FEC
This section provides a sequential flow for dynamic reconfiguration of 25GbE PTP FEC configuration to 25GbE PTP Non-FEC configuration. For other variations, you can refer to the generated C file that provides comprehensive information through comments.
- Assert the i_sl_tx_rst_n and i_sl_rx_rst_n reset signals.
- Disable Serdes (via PMA attribute code 0x0001). For more information, refer to the E-Tile Transceiver PHY User Guide.
- Perform PMA Analog Reset. For more information, refer to the E-Tile Transceiver PHY User Guide.
- Change the following registers:
Table 32. Registers: 25GbE PTP FEC to 25GbE PTP No FEC Block Configuration Registers Offset Register Bits From Value To Value ELANE txmac_ehip_cfg 0x40B am_period[31:15] 17'd81916 17'd81919 flowreg_rate [8:6] 3’b011 3’b011 am_width [5:3] 3’b100 3’b001 phy_ehip_pcs_modes 0x30E use_aligner [9] 1’b0 1’b1 use_am_insert [4] 1’b1 1’b0 use_stripper [3] 1’b0 1’b1 RS-FEC rsfec_top_clk_cfg 0x004 fec_lane_ena [11:8] 4’b1xxx 4’b0xxx rsfec_top_tx_cfg 0x010 core_tx_in_sel3 [14:12] 3’b001 3’b110 rsfec_top_rx_cfg 0x014 core_rx_out_sel3 [13:12] 2’b01 2’b00 Transceiver xcvrif_ctrl0 (0x4) 0x004 cfg_tx_data_in_sel [4:2] 2’b01 2’b00 xcvrif_ctrl0 (0x5) 0x005 cfg_clk_en_fec_d2_tx [13] 1’b1 1’b0 cfg_clk_en_pcs_d2_tx [12] 1’b0 1’b1 xcvrif_ctrl0 (0x7) 0x007 cfg_rx_fifo_clk_sel [30:29] 2’b00 2’b10 xcvrif_ctrl0 (0x37) 0x037 rxbit_cntr_pma [7] 1’b0 1’b1 cfg_rx_bit_counter_rollover 0x036[3:0], 0x035, 0x034 - 20‘h14803 20‘h18A03 - Adjust the phase offset of a recovered clock using the RX Phase Slip (via PMA attribute code 0x000E). For more information, refer to the E-Tile Transceiver PHY User Guide.
- Enable Serdes (via PMA attribute code 0x0001). For more information, refer to the E-Tile Transceiver PHY User Guide.
- Enable internal serial loopback (via PMA attribute code 0x0008). For more information, refer to the E-Tile Transceiver PHY User Guide.
- Deassert the i_sl_tx_rst_n and i_sl_rx_rst_n reset signals.
- Wait until:
PIO_OUT[4:0] =0x1F(o_rx_ptp_raedy, o_tx_ptp_ready, o_sl_rx_pcs_ready, o_sl_rx_block_lock, o_ehip_ready asserted)
- Send packets for RX CDR deskew training, wait until:
PIO_OUT[4] =0x1 (o_rx_ptp_ready asserted)
- Clear ELANE statistic counters.
- Enable packet generator to send 20 packets data.
- Check TX packet count statistic counter to ensure all the packets are sent, then stop packet generator.
- Check for the expected packets to be received by packet checker.
Related Information