Visible to Intel only — GUID: uck1525905880342
Ixiasoft
1. Datasheet
2. Quick Start Guide
3. Parameter Settings
4. Physical Layout
5. 64- or 128-Bit Avalon-MM Interface to the Endpoint Application Layer
6. Registers
7. Reset and Clocks
8. Interrupts for Endpoints
9. Error Handling
10. Design Implementation
11. Throughput Optimization
12. Additional Features
13. Avalon-MM Testbench and Design Example
14. Avalon-MM Testbench and Design Example for Root Port
15. Hard IP Reconfiguration
16. Debugging
A. PCI Express Protocol Stack
B. Transaction Layer Packet (TLP) Header Formats
C. Lane Initialization and Reversal
D. Arria® 10 or Cyclone® 10 GX Avalon® -MM Interface for PCIe* Solutions User Guide Archive
E. Document Revision History
1.1. Arria® 10 or Cyclone® 10 GX Avalon-MM Interface for PCIe Datasheet
1.2. Features
1.3. Release Information
1.4. Device Family Support
1.5. Configurations
1.6. Design Examples
1.7. IP Core Verification
1.8. Resource Utilization
1.9. Recommended Speed Grades
1.10. Creating a Design for PCI Express
3.1. Parameters
3.2. Avalon-MM Settings
3.3. Base Address Register (BAR) Settings
3.4. Device Identification Registers
3.5. PCI Express and PCI Capabilities Parameters
3.6. Configuration, Debug, and Extension Options
3.7. Vendor Specific Extended Capability (VSEC)
3.8. PHY Characteristics
3.9. Example Designs
5.1. 32-Bit Non-Bursting Avalon-MM Control Register Access (CRA) Slave Signals
5.2. Bursting and Non-Bursting Avalon® -MM Module Signals
5.3. 64- or 128-Bit Bursting TX Avalon-MM Slave Signals
5.4. Clock Signals
5.5. Reset, Status, and Link Training Signals
5.6. Interrupts for Endpoints when Multiple MSI/MSI-X Support Is Enabled
5.7. Hard IP Status Signals
5.8. Physical Layer Interface Signals
6.1. Correspondence between Configuration Space Registers and the PCIe Specification
6.2. Type 0 Configuration Space Registers
6.3. Type 1 Configuration Space Registers
6.4. PCI Express Capability Structures
6.5. Intel-Defined VSEC Registers
6.6. CvP Registers
6.7. 64- or 128-Bit Avalon-MM Bridge Register Descriptions
6.8. Programming Model for Avalon-MM Root Port
6.9. Uncorrectable Internal Error Mask Register
6.10. Uncorrectable Internal Error Status Register
6.11. Correctable Internal Error Mask Register
6.12. Correctable Internal Error Status Register
6.7.1.1. Avalon-MM to PCI Express Interrupt Status Registers
6.7.1.2. Avalon-MM to PCI Express Interrupt Enable Registers
6.7.1.3. PCI Express Mailbox Registers
6.7.1.4. Avalon-MM-to-PCI Express Address Translation Table
6.7.1.5. PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
6.7.1.6. Avalon-MM Mailbox Registers
6.7.1.7. Control Register Access (CRA) Avalon-MM Slave Port
13.5.1. ebfm_barwr Procedure
13.5.2. ebfm_barwr_imm Procedure
13.5.3. ebfm_barrd_wait Procedure
13.5.4. ebfm_barrd_nowt Procedure
13.5.5. ebfm_cfgwr_imm_wait Procedure
13.5.6. ebfm_cfgwr_imm_nowt Procedure
13.5.7. ebfm_cfgrd_wait Procedure
13.5.8. ebfm_cfgrd_nowt Procedure
13.5.9. BFM Configuration Procedures
13.5.10. BFM Shared Memory Access Procedures
13.5.11. BFM Log and Message Procedures
13.5.12. Verilog HDL Formatting Functions
A.4.1. Avalon‑MM Bridge TLPs
A.4.2. Avalon-MM-to-PCI Express Write Requests
A.4.3. Avalon-MM-to-PCI Express Upstream Read Requests
A.4.4. PCI Express-to-Avalon-MM Read Completions
A.4.5. PCI Express-to-Avalon-MM Downstream Write Requests
A.4.6. PCI Express-to-Avalon-MM Downstream Read Requests
A.4.7. Avalon-MM-to-PCI Express Read Completions
A.4.8. PCI Express-to-Avalon-MM Address Translation for 32-Bit Bridge
A.4.9. Minimizing BAR Sizes and the PCIe Address Space
A.4.10. Avalon® -MM-to-PCI Express Address Translation Algorithm for 32-Bit Addressing
Visible to Intel only — GUID: uck1525905880342
Ixiasoft
14.2.1. Simulating the Design Example
Below are the steps to run a simulation:
- Go to the testbench simulation directory.
- Run the simulation script for the simulator of your choice. Refer to the table below for more details.
- Analyze the results.
Simulator | Working Directory | Instructions |
---|---|---|
ModelSim* | <example_design>/pcie_example_design_tb/pcie_example_design_tb/sim/mentor/ |
|
VCS* | <example_design>/pcie_example_design_tb/pcie_example_design_tb/sim/synopsys/vcs |
|
NCSim* | <example_design>/pcie_example_design_tb/pcie_example_design_tb/sim/cadence |
|
Xcelium* Parallel Simulator | <example_design>/pcie_example_design_tb/pcie_example_design_tb/sim/xcelium |
|
Following is the partial transcript from a successful simulation of the Arria® 10 Avalon® -MM Root Port design example:
INFO: 865 ns EP Link Speed change to: Gen1 INFO: 4205 ns EP LTSSM State: DETECT.ACTIVE INFO: 5309 ns EP LTSSM State: POLLING.ACTIVE INFO: 18173 ns EP LTSSM State: DETECT.QUIET INFO: 18509 ns EP LTSSM State: DETECT.ACTIVE INFO: 19549 ns EP LTSSM State: POLLING.ACTIVE INFO: 20349 ns RP Link Speed change to: Gen1 INFO: 20377 ns RP Link Speed change to: 0 INFO: 20605 ns RP Link Speed change to: Gen1 INFO: 23965 ns RP LTSSM State: DETECT.ACTIVE INFO: 28765 ns RP LTSSM State: DETECT.QUIET INFO: 32029 ns RP LTSSM State: DETECT.ACTIVE INFO: 32413 ns EP LTSSM State: DETECT.QUIET INFO: 35693 ns EP LTSSM State: DETECT.ACTIVE INFO: 36765 ns EP LTSSM State: POLLING.ACTIVE INFO: 36797 ns RP LTSSM State: POLLING.ACTIVE INFO: 39901 ns EP LTSSM State: POLLING.CONFIG INFO: 40317 ns RP LTSSM State: POLLING.CONFIG INFO: 41597 ns RP LTSSM State: CONFIG.LINKWIDTH.START INFO: 41821 ns EP LTSSM State: CONFIG.LINKWIDTH.START INFO: 42237 ns EP LTSSM State: CONFIG.LINKWIDTH.ACCEPT INFO: 42781 ns RP LTSSM State: CONFIG.LINKWIDTH.ACCEPT INFO: 43165 ns RP LTSSM State: CONFIG.LANENUM.WAIT INFO: 43709 ns EP LTSSM State: CONFIG.LANENUM.WAIT INFO: 44029 ns EP LTSSM State: CONFIG.LANENUM.ACCEPT INFO: 44189 ns RP LTSSM State: CONFIG.LANENUM.ACCEPT INFO: 44573 ns RP LTSSM State: CONFIG.COMPLETE INFO: Start Enumeration Process INFO: 45117 ns EP LTSSM State: CONFIG.COMPLETE INFO: 46621 ns RP LTSSM State: CONFIG.IDLE INFO: 47389 ns EP LTSSM State: CONFIG.IDLE INFO: 47581 ns EP LTSSM State: L0 INFO: 47805 ns RP LTSSM State: L0 INFO: 75005 ns RP LTSSM State: RECOVERY.RCVRLOCK INFO: 75869 ns EP LTSSM State: RECOVERY.RCVRLOCK INFO: 76637 ns EP LTSSM State: RECOVERY.RCVRCFG INFO: 78045 ns RP LTSSM State: RECOVERY.RCVRCFG INFO: 80285 ns RP LTSSM State: RECOVERY.SPEED INFO: 80509 ns EP LTSSM State: RECOVERY.SPEED INFO: 82345 ns RP Link Speed change to: Gen3 INFO: 82353 ns RP LTSSM State: RECOVERY.RCVRLOCK INFO: 82389 ns EP Link Speed change to: Gen3 INFO: 82397 ns EP LTSSM State: RECOVERY.RCVRLOCK INFO: 82933 ns EP LTSSM State: RECOVERY.RCVRCFG INFO: 83769 ns RP LTSSM State: RECOVERY.RCVRCFG INFO: 84377 ns RP LTSSM State: RECOVERY.IDLE INFO: 84997 ns EP LTSSM State: RECOVERY.IDLE INFO: 85093 ns EP LTSSM State: L0 INFO: 85193 ns RP LTSSM State: L0 INFO: 82345 ns RP Link Speed change to: Gen3 INFO: 82353 ns RP LTSSM State: RECOVERY.RCVRLOCK INFO: 82389 ns EP Link Speed change to: Gen3 INFO: 82397 ns EP LTSSM State: RECOVERY.RCVRLOCK INFO: 82933 ns EP LTSSM State: RECOVERY.RCVRCFG INFO: 83769 ns RP LTSSM State: RECOVERY.RCVRCFG INFO: 84377 ns RP LTSSM State: RECOVERY.IDLE INFO: 84997 ns EP LTSSM State: RECOVERY.IDLE INFO: 85093 ns EP LTSSM State: L0 INFO: 85193 ns RP LTSSM State: L0 INFO: Finish Enumeration Process TXS interface sent 12345678, received 12345678 TXS interface sent 89abcdef, received 89abcdef TXS interface sent 5f5f5f5f, received 5f5f5f5f TXS interface sent c1c1c1c1, received c1c1c1c1 Simulation pass