Visible to Intel only — GUID: olu1504069671746
Ixiasoft
Visible to Intel only — GUID: olu1504069671746
Ixiasoft
2.4.1.4.2. Loop Pipelining Demonstration
- Implement separation of forward logic
- Retime the loop register
- Create the feedback loop equivalence with cascade logic
Original Loop Structure Example Verilog HDL Code
module orig_loop_strct (rstn, clk, in, x, y, out);
input clk, rstn, in, x, y;
output out;
reg out;
reg in_reg;
always @ ( posedge clk )
if ( !rstn ) begin
in_reg <= 1'b0;
end else begin
in_reg <= in;
end
always @ ( posedge clk )
if ( !rstn ) begin
out <= 1'b0;
end else begin
out <= y*out + x*in_reg;
end
endmodule //orig_loop_strct
The first stage of optimization is rewriting logic to remove as much logic as possible from the loop, and create a forward logic block. The goal of rewriting is to remove as much work as possible from the feedback loop. The Compiler cannot automatically optimize any logic in a feedback loop. Consider the following recommendations in removing logic from the loop:
- Evaluate as many decisions and perform as many calculations in advance of the loop, that do not directly rely on the loop value.
- Potentially pass logic into the register stage before passing into the loop.
After rewriting the logic, the Compiler can now freely retime the logic that you move to the forward path.
In the next optimization stage, retime the loop register to ensure that the design functions the same as the original loop circuitry.
Finally, further optimize the loop by repeating the first optimization steps with the logic in the highlighted boundary.
Four Level Optimization Example Verilog HDL Code
module cll_hypr_rtm_synopt ( rstn, clk, x, y, in, out);
input rstn, clk, x, y, in;
output out;
reg out;
reg in_reg;
wire out_add1;
wire out_add2;
wire out_add3;
wire out_add4;
reg out_add1_reg1;
reg out_add1_reg2;
reg out_add1_reg3;
reg out_add1_reg4;
always @ ( posedge clk )
if ( !rstn ) begin
in_reg <= 0;
end else begin
in_reg <= in;
end
always @ ( posedge clk )
if ( !rstn ) begin
out_add1_reg1 <= 0;
out_add1_reg2 <= 0;
out_add1_reg3 <= 0;
out_add1_reg4 <= 0;
end else begin
out_add1_reg1 <= out_add1;
out_add1_reg2 <= out_add1_reg1;
out_add1_reg3 <= out_add1_reg2;
out_add1_reg4 <= out_add1_reg3;
end
assign out_add1 = x*in_reg + ((((y*out_add1_reg4)*y)*y)*y);
assign out_add2 = out_add1 + (y*out_add1_reg1);
assign out_add3 = out_add2 + ((y*out_add1_reg2)*y);
assign out_add4 = out_add3 + (((y*out_add1_reg3)*y)*y);
always @ ( posedge clk ) begin
if ( !rstn )
out <= 0;
else
out <= out_add4;
end
endmodule //cll_hypr_rtm_synopt