Visible to Intel only — GUID: jnk1519933009053
Ixiasoft
1.3.2.1. Using Simulation Signal Activity Data in Power Analysis
1.3.2.2. Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
1.3.2.3. Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
1.3.2.4. Signal Activities from User Defaults Only
1.5.1. Complete Design Simulation Power Analysis Flow
1.5.2. Modular Design Simulation Power Analysis Flow
1.5.3. Multiple Simulation Power Analysis Flow
1.5.4. Overlapping Simulation Power Analysis Flow
1.5.5. Partial Design Simulation Power Analysis Flow
1.5.6. Vectorless Estimation Power Analysis Flow
2.4.1. Clock Power Management
2.4.2. Pipelining and Retiming
2.4.3. Architectural Optimization
2.4.4. I/O Power Guidelines
2.4.5. Dynamically Controlled On-Chip Terminations (OCT)
2.4.6. Memory Optimization (M20K/MLAB)
2.4.7. DDR Memory Controller Settings
2.4.8. DSP Implementation
Implement Multiplier + Accumulator in 1 DSP
Implement multiplication in 2 DSPs and the adder in LABs
2.4.9. Reducing High-Speed Tile (HST) Usage
2.4.10. Unused Transceiver Channels
2.4.11. Periphery Power reduction XCVR Settings
Visible to Intel only — GUID: jnk1519933009053
Ixiasoft
2.4.8. DSP Implementation
When you maximize the packing of DSP blocks, you reduce Logic Utilization, power consumption, and increase efficiency. The HDL coding style grants you control of the DSP resources available in the FPGA.
Implement Multiplier + Accumulator in 1 DSP
always @ (posedge clk) begin if (ena) begin dataout <= dataa * datab + datac * datad; end end
Implement multiplication in 2 DSPs and the adder in LABs
always @ (posedge clk) begin if (ena) begin mult1 <= dataa * datab; mult2 <= datac * datad; end end always @(posedge clk) begin if (ena) begin dataout <= mult1 + mult2 end end
Related Information