Embedded Peripherals IP User Guide

ID 683130
Date 9/18/2024
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents
1. Introduction 2. Avalon® -ST Multi-Channel Shared Memory FIFO Core 3. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 4. Avalon® -ST Serial Peripheral Interface Core 5. SPI Core 6. SPI Agent/JTAG to Avalon® Host Bridge Cores 7. Intel eSPI Agent Core 8. eSPI to LPC Bridge Core 9. Ethernet MDIO Core 10. Intel FPGA 16550 Compatible UART Core 11. UART Core 12. JTAG UART Core 13. Intel FPGA Avalon® Mailbox Core 14. Intel FPGA Avalon® Mutex Core 15. Intel FPGA Avalon® I2C (Host) Core 16. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 17. Intel FPGA Avalon® Compact Flash Core 18. EPCS/EPCQA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller Core 20. Intel FPGA Serial Flash Controller II Core 21. Intel FPGA Generic QUAD SPI Controller Core 22. Intel FPGA Generic QUAD SPI Controller II Core 23. Interval Timer Core 24. Intel FPGA Avalon FIFO Memory Core 25. On-Chip Memory (RAM and ROM) Intel FPGA IP 26. On-Chip Memory II (RAM or ROM) Intel FPGA IP 27. Optrex 16207 LCD Controller Core 28. PIO Core 29. PLL Cores 30. DMA Controller Core 31. Modular Scatter-Gather DMA Core 32. Scatter-Gather DMA Controller Core 33. SDRAM Controller Core 34. Tri-State SDRAM Core 35. Video Sync Generator and Pixel Converter Cores 36. Intel FPGA Interrupt Latency Counter Core 37. Performance Counter Unit Core 38. Vectored Interrupt Controller Core 39. Avalon® -ST Data Pattern Generator and Checker Cores 40. Avalon® -ST Test Pattern Generator and Checker Cores 41. System ID Peripheral Core 42. Avalon® Packets to Transactions Converter Core 43. Avalon® -ST Multiplexer and Demultiplexer Cores 44. Avalon® -ST Bytes to Packets and Packets to Bytes Converter Cores 45. Avalon® -ST Delay Core 46. Avalon® -ST Round Robin Scheduler Core 47. Avalon® -ST Splitter Core 48. Avalon® -MM DDR Memory Half Rate Bridge Core 49. Intel FPGA GMII to RGMII Converter Core 50. HPS GMII to RGMII Adapter Intel® FPGA IP 51. Intel FPGA MII to RMII Converter Core 52. HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core Intel® FPGA IP 53. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 54. Intel FPGA MSI to GIC Generator Core 55. Cache Coherency Translator Intel® FPGA IP 56. Lightweight UART Core

2.3.2. Operation

The Avalon® -ST Multi-Channel Shared FIFO core allocates dedicated memory segments within the core for each channel, and is implemented such that the memory segments occupy a single memory block. The parameter FIFO depth determines the depth of each memory segment.

The core receives data on its in interface ( Avalon® -ST sink) and stores the data in the allocated memory segments. If a packet contains any error (in_error signal is asserted), the core drops the packet.

When the core receives a request on its request interface ( Avalon® -MM agent), it forwards the requested data to its out interface ( Avalon® -ST source) only when it has received a full packet on its in interface. If the core has not received a full packet or has no data for the requested channel, it deasserts the valid signal on its out interface to indicate that data is not available for the channel. The output latency is three and only one word of data can be requested at a time.

When the Avalon® -MM request interface is not in use, the request_write signal is kept asserted and the request_address signal is set to 0. Hence, if you configure the core to support more than one channel, you must also ensure that the Use request parameter is turned on. Otherwise, only channel 0 is accessible.

You can configure almost-full thresholds to manage FIFO overflow. The current threshold status for each channel is available from the core's Avalon® -ST status interfaces in a round-robin fashion. For example, if the threshold status for channel 0 is available on the interface in clock cycle n, the threshold status for channel 1 is available in clock cycle n+1 and so forth.