Visible to Intel only — GUID: cru1414690806830
Ixiasoft
1. Cyclone® V Hard Processor System Technical Reference Manual Revision History
2. Introduction to the Hard Processor System
3. Clock Manager
4. Reset Manager
5. FPGA Manager
6. System Manager
7. Scan Manager
8. System Interconnect
9. HPS-FPGA Bridges
10. Cortex®-A9 Microprocessor Unit Subsystem
11. CoreSight* Debug and Trace
12. SDRAM Controller Subsystem
13. On-Chip Memory
14. NAND Flash Controller
15. SD/MMC Controller
16. Quad SPI Flash Controller
17. DMA Controller
18. Ethernet Media Access Controller
19. USB 2.0 OTG Controller
20. SPI Controller
21. I2C Controller
22. UART Controller
23. General-Purpose I/O Interface
24. Timer
25. Watchdog Timer
26. CAN Controller
27. Introduction to the HPS Component
28. Instantiating the HPS Component
29. HPS Component Interfaces
30. Simulating the HPS Component
31. Register Address Map for Cyclone V HPS
A. Booting and Configuration
8.3.1. Master to Slave Connectivity Matrix
8.3.2. System Interconnect Address Spaces
8.3.3. Master Caching and Buffering Overrides
8.3.4. Security
8.3.5. Configuring the Quality of Service Logic
8.3.6. Cyclic Dependency Avoidance Schemes
8.3.7. System Interconnect Master Properties
8.3.8. Interconnect Slave Properties
8.3.9. Upsizing Data Width Function
8.3.10. Downsizing Data Width Function
8.3.11. Lock Support
8.3.12. FIFO Buffers and Clock Crossing
8.3.13. System Interconnect Resets
10.3.1. Functional Description
10.3.2. Implementation Details
10.3.3. Cortex®-A9 Processor
10.3.4. Interactive Debugging Features
10.3.5. L1 Caches
10.3.6. Preload Engine
10.3.7. Floating Point Unit
10.3.8. NEON* Multimedia Processing Engine
10.3.9. Memory Management Unit
10.3.10. Performance Monitoring Unit
10.3.11. Arm* Cortex* -A9 MPCore* Timers
10.3.12. Generic Interrupt Controller
10.3.13. Global Timer
10.3.14. Snoop Control Unit
10.3.15. Accelerator Coherency Port
11.1. Features of CoreSight* Debug and Trace
11.2. Arm* CoreSight* Documentation
11.3. CoreSight Debug and Trace Block Diagram and System Integration
11.4. Functional Description of CoreSight Debug and Trace
11.5. CoreSight* Debug and Trace Programming Model
11.6. CoreSight Debug and Trace Address Map and Register Definitions
11.4.1. Debug Access Port
11.4.2. System Trace Macrocell
11.4.3. Trace Funnel
11.4.4. CoreSight Trace Memory Controller
11.4.5. AMBA* Trace Bus Replicator
11.4.6. Trace Port Interface Unit
11.4.7. Embedded Cross Trigger System
11.4.8. Program Trace Macrocell
11.4.9. HPS Debug APB* Interface
11.4.10. FPGA Interface
11.4.11. Debug Clocks
11.4.12. Debug Resets
12.1. Features of the SDRAM Controller Subsystem
12.2. SDRAM Controller Subsystem Block Diagram
12.3. SDRAM Controller Memory Options
12.4. SDRAM Controller Subsystem Interfaces
12.5. Memory Controller Architecture
12.6. Functional Description of the SDRAM Controller Subsystem
12.7. SDRAM Power Management
12.8. DDR PHY
12.9. Clocks
12.10. Resets
12.11. Port Mappings
12.12. Initialization
12.13. SDRAM Controller Subsystem Programming Model
12.14. Debugging HPS SDRAM in the Preloader
12.15. SDRAM Controller Address Map and Register Definitions
14.1. NAND Flash Controller Features
14.2. NAND Flash Controller Block Diagram and System Integration
14.3. NAND Flash Controller Signal Descriptions
14.4. Functional Description of the NAND Flash Controller
14.5. NAND Flash Controller Programming Model
14.6. NAND Flash Controller Address Map and Register Definitions
15.1. Features of the SD/MMC Controller
15.2. SD/MMC Controller Block Diagram and System Integration
15.3. SD/MMC Controller Signal Description
15.4. Functional Description of the SD/MMC Controller
15.5. SD/MMC Controller Programming Model
15.6. SD/MMC Controller Address Map and Register Definitions
16.1. Features of the Quad SPI Flash Controller
16.2. Quad SPI Flash Controller Block Diagram and System Integration
16.3. Interface Signals
16.4. Functional Description of the Quad SPI Flash Controller
16.5. Quad SPI Flash Controller Programming Model
16.6. Quad SPI Flash Controller Address Map and Register Definitions
16.4.1. Overview
16.4.2. Data Slave Interface
16.4.3. SPI Legacy Mode
16.4.4. Register Slave Interface
16.4.5. Local Memory Buffer
16.4.6. DMA Peripheral Request Controller
16.4.7. Arbitration between Direct/Indirect Access Controller and STIG
16.4.8. Configuring the Flash Device
16.4.9. XIP Mode
16.4.10. Write Protection
16.4.11. Data Slave Sequential Access Detection
16.4.12. Clocks
16.4.13. Resets
16.4.14. Interrupts
18.6.1. System Level EMAC Configuration Registers
18.6.2. EMAC FPGA Interface Initialization
18.6.3. EMAC HPS Interface Initialization
18.6.4. DMA Initialization
18.6.5. EMAC Initialization and Configuration
18.6.6. Performing Normal Receive and Transmit Operation
18.6.7. Stopping and Starting Transmission
18.6.8. Programming Guidelines for Energy Efficient Ethernet
18.6.9. Programming Guidelines for Flexible Pulse-Per-Second (PPS) Output
19.1. Features of the USB OTG Controller
19.2. USB OTG Controller Block Diagram and System Integration
19.3. USB 2.0 ULPI PHY Signal Description
19.4. Functional Description of the USB OTG Controller
19.5. USB OTG Controller Programming Model
19.6. USB 2.0 OTG Controller Address Map and Register Definitions
26.3.1.1.1. Message Valid (MsgVal)
26.3.1.1.2. New Data (NewDat)
26.3.1.1.3. Message Lost (MsgLst)
26.3.1.1.4. Interrupt Pending (IntPnd)
26.3.1.1.5. Transmit Interrupt Enable (TxIE)
26.3.1.1.6. Receive Interrupt Enable (RxIE)
26.3.1.1.7. Remote Enable (RmtEn)
26.3.1.1.8. Transmit Request (TxRqst)
26.3.1.1.9. End of Block (EoB)
30.1. Simulation Flows
30.2. Clock and Reset Interfaces
30.3. FPGA-to-HPS AXI Slave Interface
30.4. HPS-to-FPGA AXI Master Interface
30.5. Lightweight HPS-to-FPGA AXI Master Interface
30.6. FPGA-to-HPS SDRAM Interface
30.7. HPS-to-FPGA MPU Event Interface
30.8. Interrupts Interface
30.9. HPS-to-FPGA Debug APB* Interface
30.10. FPGA-to-HPS System Trace Macrocell Hardware Event Interface
30.11. HPS-to-FPGA Cross-Trigger Interface
30.12. HPS-to-FPGA Trace Port Interface
30.13. FPGA-to-HPS DMA Handshake Interface
30.14. Boot from FPGA Interface
30.15. General Purpose Input Interface
Visible to Intel only — GUID: cru1414690806830
Ixiasoft
8.3.2.2. L3 Address Space
The L3 address space is 4 GB and applies to all L3 masters except the MPU subsystem.
The L3 address space configurations contain the regions shown in the following table:
Description | Condition | Base Address | End Address | Size |
---|---|---|---|---|
SDRAM window (without on-chip RAM) | When remap.nonmpuzero 14 is clear | 0x00000000 | 0xBFFFFFFF | 3 GB |
On-chip RAM | When remap.nonmpuzero 14 is set | 0x00000000 | 0x0000FFFF | 64 KB |
SDRAM window (with on-chip RAM) | When remap.nonmpuzero 14 is set | 0x00010000 | 0xBFFFFFFF | 3145664 KB = 3 GB - 64 KB |
ACP window | Always visible | 0x80000000 | 0xBFFFFFFF | 1 GB |
HPS-to-FPGA | When remap.hps2fpga 14 is set. Not visible to FPGA-to-HPS bridge. | 0xC0000000 | 0xFBFFFFFF | 960 MB |
System trace macrocell | Always visible to DMA and FPGA-to-HPS | 0xFC000000 | 0xFEFFFFFF | 48 KB |
Debug access port | Not visible to master peripherals. Always visible to other masters. | 0xFF000000 | 0xFF1FFFFF | 2 MB |
Lightweight HPS-to-FPGA | Not visible to master peripherals. Visible to other masters when remap.hps2fpga 14 is set. | 0xFF200000 | 0xFF3FFFFF | 2 MB |
Peripherals | Not visible to master peripherals. Always visible to other masters. | 0xFF400000 | 0xFFFCFFFF | 12096 KB |
On-chip RAM | Always visible | 0xFFFF0000 | 0xFFFFFFFF | 64 KB |
SDRAM Window Region
The SDRAM window region is 3 GB and provides access to the bottom 3 GB of the SDRAM address space. Any L3 master can access a cache-coherent view of SDRAM by performing a cacheable access through the ACP.On-Chip RAM Region
The system interconnect remap register, in the l3regs group, determines if the 64 KB starting at address 0x0 is mapped to the on-chip RAM or the SDRAM. The SDRAM is mapped to address 0x0 on reset.ACP Window Region
The ACP window region is 1 GB and provides access to a configurable gigabyte-aligned region of the MPU address space. Registers in the ACP ID mapper control which gigabyte-aligned region of the MPU address space is accessed by the ACP window region. The ACP window region is used by L3 masters to perform coherent accesses into the MPU address space. For more information about the ACP ID mapper, refer to the Cortex-A9 Microprocessor Unit Subsystem chapter.HPS-to-FPGA Slaves Region
The HPS-to-FPGA slaves region provides access to 960 MB of slaves in the FPGA fabric through the HPS-to-FPGA bridge.Lightweight HPS-to-FPGA Slaves Region
The lightweight HPS-to-FPGA slaves provide access to slaves in the FPGA fabric through the lightweight HPS-to-FPGA bridge.Peripherals Region
The peripherals region includes slaves connected to the L3 interconnect and L4 buses.On-Chip RAM Region
The on-chip RAM is always mapped (independent of the boot region contents).
14 For details about the remap register, refer to "Bit Fields for Modifying the Memory Map"