Visible to Intel only — GUID: tdz1500399334203
Ixiasoft
1. Introduction to the Intel® Stratix® 10 SoC Device Design Guidelines
2. Board Design Guidelines for Stratix 10 SoC FPGAs
3. Interfacing to the FPGA for Stratix 10 SoC FPGAs
4. System Considerations for Stratix 10 SoC FPGAs
5. Embedded Software Design Guidelines for Intel® Stratix® 10 SoC FPGAs
6. Recommended Resources for Stratix 10 SoC FPGAs
2.1. Pin Connection Considerations for Board Design
2.2. HPS Clocking and Reset Design Considerations
2.3. Design Considerations for Connecting Device I/O to HPS Peripherals and Memory
2.4. Design Guidelines for HPS Interfaces
2.5. HPS EMIF Design Considerations
2.6. HPS Memory Debug
2.7. Boundary Scan for HPS
2.8. Embedded Software Debugging and Trace
2.9. Board Design Guidelines for Intel® Stratix® 10 SoC FPGAs Revision History
3.1. Overview of HPS Memory-Mapped Interfaces
3.2. Recommended System Topologies
3.3. Recommended Starting Point for HPS-to-FPGA Interface Designs
3.4. Timing Closure for FPGA Accelerators
3.5. Information on How to Configure and Use the Bridges
3.6. Interfacing to the FPGA for Intel® Stratix® 10 SoC FPGAs Revision History
5.1. Overview
5.2. Assembling the Components of Your Software Development Platform
5.3. Golden Hardware Reference Design (GHRD)
5.4. Selecting an Operating System for Your Application
5.5. Assembling Your Software Development Platform for Linux*
5.6. Assembling your Software Development Platform for a Bare-Metal Application
5.7. Assembling your Software Development Platform for Partner OS or RTOS
5.8. Choosing the Bootloader Software
5.9. Selecting Software Tools for Development, Debug and Trace
5.10. Boot And Configuration Considerations
5.11. System Reset Considerations
5.12. Flash Considerations
5.13. Embedded Software Debugging and Trace
5.14. Embedded Software Design Guidelines for Intel® Stratix® 10 SoC FPGAs Revision History
Visible to Intel only — GUID: tdz1500399334203
Ixiasoft
5.4.3. Using the Bootloader as a Bare-Metal Framework
If your application is relatively simple, and does not require complex features such as multi-core or multi-tasking, one option is to include it in the bootloader.
Including your application in the bootloader has the following advantages:
- Potentially faster boot time
- Access to features already implemented in the bootloader, such as mass storage and networking
The following bootloaders are available, with source code:
- U-Boot—open-source GPL License
- UEFI—open-source BSD license
- Arm* Trusted Firmware (ATF)—open-source BSD license