Visible to Intel only — GUID: nik1411172634499
Ixiasoft
Product Discontinuance Notification
1. About the 40- and 100-Gbps Ethernet MAC and PHY IP Core
2. Getting Started
3. Functional Description
4. Debugging the 40GbE and 100GbE Link
A. 40-100GbE IP Core Example Design
B. Address Map Changes for the 40-100GbE IP Core v12.0 Release
C. 10GBASE-KR Registers
D. Additional Information
2.1. Installing and Licensing Intel® FPGA IP Cores
2.2. Specifying the 40-100GbE IP Core Parameters and Options
2.3. IP Core Parameters
2.4. Files Generated for the 40-100GbE IP Core
2.5. Simulating the IP Core
2.6. Integrating Your IP Core in Your Design
2.7. 40-100GbE IP Core Testbenches
2.8. Simulating the 40‑100GbE IP Core With the Testbenches
2.9. Compiling the Full Design and Programming the FPGA
2.10. Initializing the IP Core
3.2.1. IP Core TX Datapath
3.2.2. IP Core TX Data Bus Interfaces
3.2.3. 40-100GbE IP Core RX Datapath
3.2.4. IP Core RX Data Bus Interfaces
3.2.5. 40GbE Lower Rate 24.24 Gbps MAC and PHY
3.2.6. 100GbE CAUI–4 PHY
3.2.7. External Reconfiguration Controller
3.2.8. Congestion and Flow Control Using Pause Frames
3.2.9. Pause Control and Generation Interface
3.2.10. Pause Control Frame and Non‑Pause Control Frame Filtering and Forwarding
3.2.11. 40-100GbE IP Core Modes of Operation
3.2.12. Link Fault Signaling Interface
3.2.13. Statistics Counters Interface
3.2.14. MAC – PHY XLGMII or CGMII Interface
3.2.15. Lane to Lane Deskew Interface
3.2.16. PCS Test Pattern Generation and Test Pattern Check
3.2.17. Transceiver PHY Serial Data Interface
3.2.18. 40GBASE-KR4 IP Core Variations
3.2.19. Control and Status Interface
3.2.20. Clocks
3.2.21. Resets
3.2.2.1. 40-100GbE IP Core User Interface Data Bus
3.2.2.2. 40-100GbE IP Core TX Data Bus with Adapters (Avalon-ST Interface)
3.2.2.3. 40-100GbE IP Core TX Data Bus Without Adapters (Custom Streaming Interface)
3.2.2.4. Bus Quantization Effects With Adapters
3.2.2.5. User Interface to Ethernet Transmission
3.2.3.1. 40-100GbE IP Core RX Filtering
3.2.3.2. 40-100GbE IP Core Preamble Processing
3.2.3.3. 40-100GbE IP Core FCS (CRC-32) Removal
3.2.3.4. 40-100GbE IP Core CRC Checking
3.2.3.5. RX CRC Forwarding
3.2.3.6. RX Automatic Pad Removal Control
3.2.3.7. Address Checking
3.2.3.8. Inter-Packet Gap
3.2.3.9. Pause Ignore
3.2.4.1. 40-100GbE IP Core User Interface Data Bus
3.2.4.2. 40-100GbE IP Core RX Data Bus with Adapters (Avalon-ST Interface)
3.2.4.3. 40-100GbE IP Core RX Data Bus Without Adapters (Custom Streaming Interface)
3.2.4.4. 100GbE IP Core RX Client Interface Examples
3.2.4.5. Error Conditions on the RX Datapath
3.4.1.1. Transceiver PHY Control and Status Registers
3.4.1.2. Lock Status Registers
3.4.1.3. Bit Error Flag Registers
3.4.1.4. PCS Hardware Error Register
3.4.1.5. BER Monitor Register
3.4.1.6. Test Mode Register
3.4.1.7. Test Pattern Counter Register
3.4.1.8. Link Fault Signaling Registers
3.4.1.9. MAC and PHY Reset Registers
3.4.1.10. PCS‑VLANE Registers
3.4.1.11. PRBS Registers
3.4.1.12. 40GBASE-KR4 Registers
3.4.1.13. MAC Configuration and Filter Registers
3.4.1.14. Pause Registers
3.4.1.15. MAC Hardware Error Register
3.4.1.16. CRC Configuration Register
3.4.1.17. MAC Feature Configuration Registers
3.4.1.18. MAC Address Registers
3.4.1.19. Statistics Registers
Visible to Intel only — GUID: nik1411172634499
Ixiasoft
3.2.10. Pause Control Frame and Non‑Pause Control Frame Filtering and Forwarding
The 40GbE and 100GbE MAC IP cores can pass the pause packets through as normal traffic or drop the pause control frames in the RX direction. You can enable and disable pass-through with the following configuration control bits:
- RX_FILTER_CTRL bit [4] enables and disables pause filtering.
- RX_FILTER_CTRL bit [5] enables and disables control filtering.
By default, pass-through is disabled.
The following rules define pause control frames filtering control:
- The RX_FILTER_CTRL register contains options to filter different packets types, such as runt packets, FCS error packets, address mismatch packets, and so on, from the RX MAC. The RX_FILTER_CTRL register contains one bit to enable pause packet filtering and one bit to enable non-pause control packet filtering. The reset state for both bits is 1, where filtering is enabled. The bits are gated by RX_FILTER_CTRL bit [0], which enables and disables all filtering.
- If you have enabled pause packet filtering, the IP core drops packets that enter the RX MAC and match the length and type of 0x8808 with an opcode of 0x1 (pause packets) and does not process them or forward them to the client interface.
- If you have enabled non‑pause control packet filtering, the IP core drops packets that enter the RX MAC and match the length and type of 0x8808 with an opcode other than 0x1 (pause packets) and does not forward them to the client interface.
- If you have disabled pause packet filtering, the RX MAC forwards pause packets to the client interface depending on their destination address. If destination address filtering is not enabled, you are forwarded all pause packets. If destination address filtering is enabled, you are only forwarded pause packets with a valid packet multicast address or a destination address matching the 40‑100GbE IP core address.
Pause and control packet pass-through do not affect the pause functionality in the TX or RX MAC.
Related Information