Visible to Intel only — GUID: nik1410564944281
Ixiasoft
1. Introduction
2. Quick Start Guide
3. Interface Overview
4. Parameters
5. Designing with the IP Core
6. Block Descriptions
7. Interrupts
8. Registers
9. Testbench and Design Example
10. Document Revision History
A. PCI Express Core Architecture
B. TX Credit Adjustment Sample Code
C. Root Port Enumeration
D. Troubleshooting and Observing the Link Status
1.1. Avalon-ST Interface with Optional SR-IOV for PCIe Introduction
1.2. Features
1.3. Release Information
1.4. Device Family Support
1.5. Recommended Fabric Speed Grades
1.6. Performance and Resource Utilization
1.7. Transceiver Tiles
1.8. PCI Express IP Core Package Layout
1.9. Channel Availability
2.1. Design Components
2.2. Hardware and Software Requirements
2.3. Directory Structure
2.4. Generating the Design Example
2.5. Simulating the Design Example
2.6. Compiling the Design Example and Programming the Device
2.7. Installing the Linux Kernel Driver
2.8. Running the Design Example Application
3.1. Avalon-ST RX Interface
3.2. Avalon-ST TX Interface
3.3. TX Credit Interface
3.4. TX and RX Serial Data
3.5. Clocks
3.6. Function-Level Reset (FLR) Interface
3.7. Control Shadow Interface for SR-IOV
3.8. Configuration Extension Bus Interface
3.9. Hard IP Reconfiguration Interface
3.10. Interrupt Interfaces
3.11. Power Management Interface
3.12. Reset
3.13. Transaction Layer Configuration Interface
3.14. PLL Reconfiguration Interface
3.15. PIPE Interface (Simulation Only)
4.1. Stratix 10 Avalon-ST Settings
4.2. Multifunction and SR-IOV System Settings
4.3. Base Address Registers
4.4. Device Identification Registers
4.5. TPH/ATS Capabilities
4.6. PCI Express and PCI Capabilities Parameters
4.7. Configuration, Debug and Extension Options
4.8. PHY Characteristics
4.9. Example Designs
6.1.1. TLP Header and Data Alignment for the Avalon-ST RX and TX Interfaces
6.1.2. Avalon-ST 256-Bit RX Interface
6.1.3. Avalon-ST 512-Bit RX Interface
6.1.4. Avalon-ST 256-Bit TX Interface
6.1.5. Avalon-ST 512-Bit TX Interface
6.1.6. TX Credit Interface
6.1.7. Interpreting the TX Credit Interface
6.1.8. Clocks
6.1.9. Update Flow Control Timer and Credit Release
6.1.10. Function-Level Reset (FLR) Interface
6.1.11. Resets
6.1.12. Interrupts
6.1.13. Control Shadow Interface for SR-IOV
6.1.14. Transaction Layer Configuration Space Interface
6.1.15. Configuration Extension Bus Interface
6.1.16. Hard IP Status Interface
6.1.17. Hard IP Reconfiguration
6.1.18. Power Management Interface
6.1.19. Serial Data Interface
6.1.20. PIPE Interface
6.1.21. Test Interface
6.1.22. PLL IP Reconfiguration
6.1.23. Message Handling
8.1.1. Register Access Definitions
8.1.2. PCI Configuration Header Registers
8.1.3. PCI Express Capability Structures
8.1.4. Intel Defined VSEC Capability Header
8.1.5. General Purpose Control and Status Register
8.1.6. Uncorrectable Internal Error Status Register
8.1.7. Uncorrectable Internal Error Mask Register
8.1.8. Correctable Internal Error Status Register
8.1.9. Correctable Internal Error Mask Register
8.1.10. SR-IOV Virtualization Extended Capabilities Registers Address Map
8.1.10.1. ARI Enhanced Capability Header
8.1.10.2. SR-IOV Enhanced Capability Registers
8.1.10.3. Initial VFs and Total VFs Registers
8.1.10.4. VF Device ID Register
8.1.10.5. Page Size Registers
8.1.10.6. VF Base Address Registers (BARs) 0-5
8.1.10.7. Secondary PCI Express Extended Capability Header
8.1.10.8. Lane Status Registers
8.1.10.9. Transaction Processing Hints (TPH) Requester Enhanced Capability Header
8.1.10.10. TPH Requester Capability Register
8.1.10.11. TPH Requester Control Register
8.1.10.12. Address Translation Services ATS Enhanced Capability Header
8.1.10.13. ATS Capability Register and ATS Control Register
9.4.1. ebfm_barwr Procedure
9.4.2. ebfm_barwr_imm Procedure
9.4.3. ebfm_barrd_wait Procedure
9.4.4. ebfm_barrd_nowt Procedure
9.4.5. ebfm_cfgwr_imm_wait Procedure
9.4.6. ebfm_cfgwr_imm_nowt Procedure
9.4.7. ebfm_cfgrd_wait Procedure
9.4.8. ebfm_cfgrd_nowt Procedure
9.4.9. BFM Configuration Procedures
9.4.10. BFM Shared Memory Access Procedures
9.4.11. BFM Log and Message Procedures
9.4.12. Verilog HDL Formatting Functions
Visible to Intel only — GUID: nik1410564944281
Ixiasoft
7.1.3. Implementing MSI-X Interrupts
Section 6.8.2 of the PCI Local Bus Specification describes the MSI-X capability and table structures. The MSI-X capability structure points to the MSI-X Table structure and MSI-X Pending Bit Array (PBA) registers. The BIOS sets up the starting address offsets and BAR associated with the pointer to the starting address of the MSI-X Table and PBA registers.
MSI-X Interrupt Components
- Host software sets up the MSI-X interrupts in the Application Layer by completing the following steps:
- Host software reads the Message Control register at 0x050 register to determine the MSI-X Table size. The number of table entries is the <value read> + 1.
The maximum table size is 2048 entries. Each 16-byte entry is divided in 4 fields as shown in the figure below. The MSI-X table can be accessed on any BAR configured. The base address of the MSI-X table must be aligned to a 4 KB boundary.
- The host sets up the MSI-X table. It programs MSI-X address, data, and masks bits for each entry as shown in the figure below.
Figure 57. Format of MSI-X Table
- The host calculates the address of the <n th > entry using the following formula:
nth_address = base address[BAR] + 16<n>
- Host software reads the Message Control register at 0x050 register to determine the MSI-X Table size. The number of table entries is the <value read> + 1.
- When Application Layer has an interrupt, it drives an interrupt request to the IRQ Source module.
- The IRQ Source sets appropriate bit in the MSI-X PBA table.
The PBA can use qword or dword accesses. For qword accesses, the IRQ Source calculates the address of the <m th > bit using the following formulas:
qword address = <PBA base addr> + 8(floor(<m>/64)) qword bit = <m> mod 64
Figure 58. MSI-X PBA Table - The IRQ Processor reads the entry in the MSI-X table.
- If the interrupt is masked by the Vector_Control field of the MSI-X table, the interrupt remains in the pending state.
- If the interrupt is not masked, IRQ Processor sends Memory Write Request to the TX slave interface. It uses the address and data from the MSI-X table. If Message Upper Address = 0, the IRQ Processor creates a three-dword header. If the Message Upper Address > 0, it creates a 4-dword header.
- The host interrupt service routine detects the TLP as an interrupt and services it.