Visible to Intel only — GUID: nik1410564961504
Ixiasoft
1. Datasheet
2. Getting Started with the Stratix V Hard IP for PCI Express
3. Getting Started with the Configuration Space Bypass Mode Qsys Example Design
4. Parameter Settings
5. Interfaces and Signal Descriptions
6. Registers
7. Interrupts
8. Error Handling
9. PCI Express Protocol Stack
10. Transaction Layer Protocol (TLP) Details
11. Throughput Optimization
12. Design Implementation
13. Additional Features
14. Hard IP Reconfiguration
15. Transceiver PHY IP Reconfiguration
16. Testbench and Design Example
17. Debugging
A. Frequently Asked Questions for PCI Express
B. Lane Initialization and Reversal
C. Document Revision History
2.1.1. Generating the Testbench
2.1.2. Simulating the Example Design
2.1.3. Generating Synthesis Files
2.1.4. Understanding the Files Generated
2.1.5. Understanding Simulation Log File Generation
2.1.6. Understanding Physical Placement of the PCIe IP Core
2.1.7. Compiling the Design in the Qsys Design Flow
2.1.8. Modifying the Example Design
2.1.9. Using the IP Catalog To Generate Your Stratix V Hard IP for PCI Express as a Separate Component
3.3.1. Timing for Configuration Read to Function 0 for the 256-Bit Avalon-ST Interface
3.3.2. Timing for Configuration Write to Function 0 for the 256-Bit Avalon-ST Interface
3.3.3. Timing for Memory Write and Read of Function 1 256-Bit Avalon-ST Interface
3.3.4. Partial Transcript for Configuration Space Bypass Simulation
5.1. Clock Signals
5.2. Reset, Status, and Link Training Signals
5.3. ECRC Forwarding
5.4. Error Signals
5.5. Interrupts for Endpoints
5.6. Interrupts for Root Ports
5.7. Completion Side Band Signals
5.8. Configuration Space Bypass Mode Interface Signals
5.9. Parity Signals
5.10. LMI Signals
5.11. Transaction Layer Configuration Space Signals
5.12. Hard IP Reconfiguration Interface
5.13. Power Management Signals
5.14. Physical Layer Interface Signals
6.1. Correspondence between Configuration Space Registers and the PCIe Specification
6.2. Type 0 Configuration Space Registers
6.3. Type 1 Configuration Space Registers
6.4. PCI Express Capability Structures
6.5. Intel-Defined VSEC Registers
6.6. CvP Registers
6.7. Uncorrectable Internal Error Mask Register
6.8. Uncorrectable Internal Error Status Register
6.9. Correctable Internal Error Mask Register
6.10. Correctable Internal Error Status Register
16.6.1. ebfm_barwr Procedure
16.6.2. ebfm_barwr_imm Procedure
16.6.3. ebfm_barrd_wait Procedure
16.6.4. ebfm_barrd_nowt Procedure
16.6.5. ebfm_cfgwr_imm_wait Procedure
16.6.6. ebfm_cfgwr_imm_nowt Procedure
16.6.7. ebfm_cfgrd_wait Procedure
16.6.8. ebfm_cfgrd_nowt Procedure
16.6.9. BFM Configuration Procedures
16.6.10. BFM Shared Memory Access Procedures
16.6.11. BFM Log and Message Procedures
16.6.12. Verilog HDL Formatting Functions
16.7.1. Changing Between Serial and PIPE Simulation
16.7.2. Using the PIPE Interface for Gen1 and Gen2 Variants
16.7.3. Viewing the Important PIPE Interface Signals
16.7.4. Disabling the Scrambler for Gen1 and Gen2 Simulations
16.7.5. Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2 Simulations
16.7.6. Changing between the Hard and Soft Reset Controller
Visible to Intel only — GUID: nik1410564961504
Ixiasoft
9.2. Transaction Layer
The Transaction Layer is located between the Application Layer and the Data Link Layer. It generates and receives Transaction Layer Packets. The following illustrates the Transaction Layer. The Transaction Layer includes three sub-blocks: the TX datapath, Configuration Space, and RX datapath.
Tracing a transaction through the RX datapath includes the following steps:
- The Transaction Layer receives a TLP from the Data Link Layer.
- The Configuration Space determines whether the TLP is well formed and directs the packet based on traffic class (TC).
- TLPs are stored in a specific part of the RX buffer depending on the type of transaction (posted, non-posted, and completion).
- The TLP FIFO block stores the address of the buffered TLP.
- The receive reordering block reorders the queue of TLPs as needed, fetches the address of the highest priority TLP from the TLP FIFO block, and initiates the transfer of the TLP to the Application Layer.
- When ECRC generation and forwarding are enabled, the Transaction Layer forwards the ECRC DWORD to the Application Layer.
Tracing a transaction through the TX datapath involves the following steps:
- The Transaction Layer informs the Application Layer that sufficient flow control credits exist for a particular type of transaction using the TX credit signals. The Application Layer may choose to ignore this information.
- The Application Layer requests permission to transmit a TLP. The Application Layer must provide the transaction and must be prepared to provide the entire data payload in consecutive cycles.
- The Transaction Layer verifies that sufficient flow control credits exist and acknowledges or postpones the request. If there is insufficient space in the retry buffer, the Transaction Layer does not accept the TLP.
- The Transaction Layer forwards the TLP to the Data Link Layer.
Figure 46. Architecture of the Transaction Layer: Dedicated Receive Buffer