Visible to Intel only — GUID: nik1410564962858
Ixiasoft
1. Datasheet
2. Getting Started with the Stratix V Hard IP for PCI Express
3. Getting Started with the Configuration Space Bypass Mode Qsys Example Design
4. Parameter Settings
5. Interfaces and Signal Descriptions
6. Registers
7. Interrupts
8. Error Handling
9. PCI Express Protocol Stack
10. Transaction Layer Protocol (TLP) Details
11. Throughput Optimization
12. Design Implementation
13. Additional Features
14. Hard IP Reconfiguration
15. Transceiver PHY IP Reconfiguration
16. Testbench and Design Example
17. Debugging
A. Frequently Asked Questions for PCI Express
B. Lane Initialization and Reversal
C. Document Revision History
2.1.1. Generating the Testbench
2.1.2. Simulating the Example Design
2.1.3. Generating Synthesis Files
2.1.4. Understanding the Files Generated
2.1.5. Understanding Simulation Log File Generation
2.1.6. Understanding Physical Placement of the PCIe IP Core
2.1.7. Compiling the Design in the Qsys Design Flow
2.1.8. Modifying the Example Design
2.1.9. Using the IP Catalog To Generate Your Stratix V Hard IP for PCI Express as a Separate Component
3.3.1. Timing for Configuration Read to Function 0 for the 256-Bit Avalon-ST Interface
3.3.2. Timing for Configuration Write to Function 0 for the 256-Bit Avalon-ST Interface
3.3.3. Timing for Memory Write and Read of Function 1 256-Bit Avalon-ST Interface
3.3.4. Partial Transcript for Configuration Space Bypass Simulation
5.1. Clock Signals
5.2. Reset, Status, and Link Training Signals
5.3. ECRC Forwarding
5.4. Error Signals
5.5. Interrupts for Endpoints
5.6. Interrupts for Root Ports
5.7. Completion Side Band Signals
5.8. Configuration Space Bypass Mode Interface Signals
5.9. Parity Signals
5.10. LMI Signals
5.11. Transaction Layer Configuration Space Signals
5.12. Hard IP Reconfiguration Interface
5.13. Power Management Signals
5.14. Physical Layer Interface Signals
6.1. Correspondence between Configuration Space Registers and the PCIe Specification
6.2. Type 0 Configuration Space Registers
6.3. Type 1 Configuration Space Registers
6.4. PCI Express Capability Structures
6.5. Intel-Defined VSEC Registers
6.6. CvP Registers
6.7. Uncorrectable Internal Error Mask Register
6.8. Uncorrectable Internal Error Status Register
6.9. Correctable Internal Error Mask Register
6.10. Correctable Internal Error Status Register
16.6.1. ebfm_barwr Procedure
16.6.2. ebfm_barwr_imm Procedure
16.6.3. ebfm_barrd_wait Procedure
16.6.4. ebfm_barrd_nowt Procedure
16.6.5. ebfm_cfgwr_imm_wait Procedure
16.6.6. ebfm_cfgwr_imm_nowt Procedure
16.6.7. ebfm_cfgrd_wait Procedure
16.6.8. ebfm_cfgrd_nowt Procedure
16.6.9. BFM Configuration Procedures
16.6.10. BFM Shared Memory Access Procedures
16.6.11. BFM Log and Message Procedures
16.6.12. Verilog HDL Formatting Functions
16.7.1. Changing Between Serial and PIPE Simulation
16.7.2. Using the PIPE Interface for Gen1 and Gen2 Variants
16.7.3. Viewing the Important PIPE Interface Signals
16.7.4. Disabling the Scrambler for Gen1 and Gen2 Simulations
16.7.5. Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2 Simulations
16.7.6. Changing between the Hard and Soft Reset Controller
Visible to Intel only — GUID: nik1410564962858
Ixiasoft
9.3. Data Link Layer
The Data Link Layer is located between the Transaction Layer and the Physical Layer. It maintains packet integrity and communicates (by DLL packet transmission) at the PCI Express link level.
The DLL implements the following functions:
- Link management through the reception and transmission of DLL Packets (DLLP), which are used for the following functions:
- Power management of DLLP reception and transmission
- To transmit and receive ACK/NAK packets
- Data integrity through generation and checking of CRCs for TLPs and DLLPs
- TLP retransmission in case of NAK DLLP reception or replay timeout, using the retry (replay) buffer
- Management of the retry buffer
- Link retraining requests in case of error through the Link Training and Status State Machine (LTSSM) of the Physical Layer
Figure 48. Data Link Layer
The DLL has the following sub-blocks:
- Data Link Control and Management State Machine—This state machine connects to both the Physical Layer’s LTSSM state machine and the Transaction Layer. It initializes the link and flow control credits and reports status to the Transaction Layer.
- Power Management—This function handles the handshake to enter low power mode. Such a transition is based on register values in the Configuration Space and received Power Management (PM) DLLPs. All of the Stratix V Hard IP for PCIe IP core variants do not support low power modes.
- Data Link Layer Packet Generator and Checker—This block is associated with the DLLP’s 16-bit CRC and maintains the integrity of transmitted packets.
- Transaction Layer Packet Generator—This block generates transmit packets, including a sequence number and a 32-bit Link CRC (LCRC). The packets are also sent to the retry buffer for internal storage. In retry mode, the TLP generator receives the packets from the retry buffer and generates the CRC for the transmit packet.
- Retry Buffer—The retry buffer stores TLPs and retransmits all unacknowledged packets in the case of NAK DLLP reception. In case of ACK DLLP reception, the retry buffer discards all acknowledged packets.
- ACK/NAK Packets—The ACK/NAK block handles ACK/NAK DLLPs and generates the sequence number of transmitted packets.
- Transaction Layer Packet Checker—This block checks the integrity of the received TLP and generates a request for transmission of an ACK/NAK DLLP.
- TX Arbitration—This block arbitrates transactions, prioritizing in the following order:
- Initialize FC Data Link Layer packet
- ACK/NAK DLLP (high priority)
- Update FC DLLP (high priority)
- PM DLLP
- Retry buffer TLP
- TLP
- Update FC DLLP (low priority)
- ACK/NAK FC DLLP (low priority)